Numerical simulations were conducted to investigate the flow field characteristics and performance of a carbon–hydrogen/oxygen-rich air rotating detonation engine (RDE). Three distinct flow field structures were observed in the gas–solid two-phase RDE. The results show that reducing the hydrogen equivalence ratio and particle diameter contribute to the transition from gas-phase single-front detonation to gas–solid two-phase double-front detonation and further to gas–solid two-phase single-front detonation. The effects of the solid fuel particle diameter and hydrogen equivalence ratio on the flow field characteristics and performance are revealed. The results show that reducing the particle diameter enhances the speed of the two-phase detonation wave, improves the pressure gain in the combustion chamber, and increases the specific impulse. Decreasing the hydrogen equivalence ratio reduces the detonation wave speed, enhances the stability of the detonation flow field, increases the pressure gain in the detonation wave and combustion chamber, and boosts the thrust. Furthermore, the selection of operational conditions to ensure stable operation and optimal performance of the RDE is discussed. In order to take into account the requirements of stability, pressure gain performance, and propulsion performance, two-phase single-front detonation should be realized in gas–solid two-phase RDE, and smaller hydrogen equivalent ratio and appropriate particle diameter should be selected. According to the conclusion of this study, the particle diameter should be 0.5–1 μm. Under such conditions, the detonation flow field demonstrates good stability, allowing the RDE to achieve higher pressure gain and specific impulse while maintaining stable operation.

1.
Ya. B.
Zeldovich
, “
To the question of energy use of detonation combustion
,”
J. Propul. Power
22
,
588
592
(
2006
).
2.
B.
Voitsekhovskii
, “
Stationary spin detonation
,”
Sov. J. Appl. Mech. Tech. Phys.
3
,
157
164
(
1960
).
3.
F. A.
Bykovskii
and
V. V.
Mitrofanov
, “
Detonation combustion of a gas mixture in a cylindrical chamber
,”
Combust., Explos. Shock Waves
16
,
570
578
(
1981
).
4.
F. A.
Bykovskii
and
E. F.
Vedernikov
, “
Continuous detonation combustion of an annular gas-mixture layer
,”
Combust., Explos. Shock Waves
32
,
489
491
(
1996
).
5.
F. A.
Bykovskii
and
E. F.
Vedernikov
, “
Continuous detonation of a subsonic flow of a propellant
,”
Combust., Explos. Shock Waves
39
,
323
334
(
2003
).
6.
F. A.
Bykovskii
,
S. A.
Zhdan
, and
E. F.
Vedernikov
, “
Continuous spin detonations
,”
J. Propul. Power
22
,
1204
1216
(
2006
).
7.
F. A.
Bykovskii
,
S. A.
Zhdan
, and
E. F.
Vedernikov
, “
Realization and modeling of continuous spin detonation of a hydrogen-oxygen mixture in flow-type combustors. 2. Combustors with expansion of the annular channel
,”
Combust., Explos. Shock Waves
45
,
716
728
(
2009
).
8.
B. A.
Rankin
,
D. R.
Richardson
,
A. W.
Caswell
,
A. G.
Naples
,
J. L.
Hoke
, and
F. R.
Schauer
, “
Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine
,”
Combust. Flame
176
,
12
22
(
2017
).
9.
B. A.
Rankin
,
J. R.
Codoni
,
K. Y.
Cho
,
J. L.
Hoke
, and
F. R.
Schauer
, “
Investigation of the structure of detonation waves in a non-premixed hydrogen–air rotating detonation engine using mid-infrared imaging
,”
Proc. Combust. Inst.
37
,
3479
3486
(
2019
).
10.
R.
Yokoo
,
K.
Goto
,
J.
Kasahara
,
V.
Athmanathan
,
J.
Braun
,
G.
Paniagua
et al, “
Experimental study of internal flow structures in cylindrical rotating detonation engines
,”
Proc. Combust. Inst.
38
,
3759
3768
(
2021
).
11.
K.
Matsuoka
,
M.
Tanaka
,
T.
Noda
,
A.
Kawasaki
, and
J.
Kasahara
, “
Experimental investigation on a rotating detonation cycle with burned gas backflow
,”
Combust. Flame
225
,
13
19
(
2021
).
12.
B. A.
Rankin
,
C. A.
Fugger
,
D. R.
Richardson
,
K. Y.
Cho
,
J.
Hoke
,
A. W.
Caswell
et al, “
Evaluation of mixing processes in a non-premixed rotating detonation engine using acetone PLIF
,” in
Proceedings of 54th AIAA Aerospace Sciences Meeting, San Diego, California, USA
(
American Institute of Aeronautics and Astronautics
,
2016
), p.
1198
.
13.
Z. M.
Ayers
,
V.
Athmanathan
,
T. R.
Meyer
, and
D. E.
Paxson
, “
Variably premixed rotating detonation engine for evaluation of detonation cycle dynamics
,”
J. Propul. Power
39
,
351
364
(
2023
).
14.
K.
Schwinn
,
R.
Gejji
,
B.
Kan
,
S.
Sardeshmukh
,
S.
Heister
, and
C. D.
Slabaugh
, “
Self-sustained, high-frequency detonation wave generation in a semi-bounded channel
,”
Combust. Flame
193
,
384
396
(
2018
).
15.
V.
Athmanathan
,
J.
Braun
,
Z. M.
Ayers
,
C. A.
Fugger
,
A. M.
Webb
,
M. N.
Slipchenko
et al, “
On the effects of reactant stratification and wall curvature in non-premixed rotating detonation combustors
,”
Combust. Flame
240
,
112013
(
2022
).
16.
S.-J.
Liu
,
S.-Y.
Huang
,
H.-Y.
Peng
, and
X.-Q.
Yuan
, “
Characteristics of methane-air continuous rotating detonation wave in hollow chambers with different diameters
,”
Acta Astronaut.
183
,
1
10
(
2021
).
17.
Y.
Wang
and
J.
Le
, “
A rotating detonation engine using methane-ethylene mixture and air
,”
Acta Astronaut.
188
,
25
35
(
2021
).
18.
Y.
Wang
and
J.
Le
, “
Rotating detonation engines with two fuel orifice schemes
,”
Acta Astronaut.
161
,
262
275
(
2019
).
19.
J.
Sosa
,
R.
Burke
,
K. A.
Ahmed
,
D. J.
Micka
,
J. W.
Bennewitz
,
S. A.
Danczyk
et al, “
Experimental evidence of H2/O2 propellants powered rotating detonation waves
,”
Combust. Flame
214
,
136
138
(
2020
).
20.
S.
Hansmetzger
,
R.
Zitoun
, and
P.
Vidal
, “
A study of continuous rotation modes of detonation in an annular chamber with constant or increasing section
,”
Shock Waves
28
,
1065
1078
(
2018
).
21.
Y.
Liu
,
W.
Zhou
,
Y.
Yang
,
Z.
Liu
, and
J.
Wang
, “
Numerical study on the instabilities in H2/air rotating detonation engines
,”
Phys. Fluids
30
,
046106
(
2018
).
22.
Z.
Sheng
,
M.
Cheng
,
D.
Shen
, and
J.-P.
Wang
, “
An active direction control method in rotating detonation combustor
,”
Int. J. Hydrogen Energy
47
,
23427
(
2022
).
23.
G.
Rong
,
M.
Cheng
,
Z.
Sheng
,
X.
Liu
, and
J.
Wang
, “
Investigation of counter-rotating shock wave phenomenon and instability mechanisms of rotating detonation engine with hollow combustor and Laval nozzle
,”
Int. J. Hydrogen Energy
47
,
23019
23037
(
2022
).
24.
J.
Kindracki
, “
Experimental research on rotating detonation in liquid fuel–gaseous air mixtures
,”
Aerosp. Sci. Technol.
43
,
445
453
(
2015
).
25.
Z.
Huang
,
M.
Zhao
,
Y.
Xu
,
G.
Li
, and
H.
Zhang
, “
Eulerian-Lagrangian modelling of detonative combustion in two-phase gas-droplet mixtures with OpenFOAM: Validations and verifications
,”
Fuel
286
,
119402
(
2021
).
26.
M.
Zhao
and
H.
Zhang
, “
Rotating detonative combustion in partially pre-vaporized dilute n-heptane sprays: Droplet size and equivalence ratio effects
,”
Fuel
304
,
121481
(
2021
).
27.
Q.
Meng
,
N.
Zhao
, and
H.
Zhang
, “
On the distributions of fuel droplets and in situ vapor in rotating detonation combustion with prevaporized n -heptane sprays
,”
Phys. Fluids
33
,
043307
(
2021
).
28.
W.
Zhu
and
Y.
Wang
, “
Effect of hydrogen flow rate and particle diameter on coal-hydrogen-air rotating detonation engines
,”
Int. J. Hydrogen Energy
47
,
1328
1342
(
2022
).
29.
W.
Zhu
,
Y.
Wang
, and
J.
Wang
, “
Flow field of a rotating detonation engine fueled by carbon
,”
Phys. Fluids
34
,
073311
(
2022
).
30.
S.
Yao
,
X.
Tang
, and
W.
Zhang
, “
Structure of a heterogeneous two-phase rotating detonation wave with ethanol–hydrogen–air mixture
,”
Phys. Fluids
35
,
031712
(
2023
).
31.
R.
Yokoo
,
K.
Goto
,
J.
Kim
,
A.
Kawasaki
,
K.
Matsuoka
,
J.
Kasahara
et al, “
Propulsion performance of cylindrical rotating detonation engine
,”
AIAA J.
58
,
5107
(
2020
).
32.
K.
Goto
,
J.
Nishimura
,
A.
Kawasaki
,
K.
Matsuoka
,
J.
Kasahara
,
A.
Matsuo
et al, “
Propulsive performance and heating environment of rotating detonation engine with various nozzles
,”
J. Propul. Power
35
,
213
223
(
2019
).
33.
Y.
Wang
,
J.
Le
,
C.
Wang
,
Y.
Zheng
, and
S.
Huang
, “
The effect of the throat width of plug nozzles on the combustion mode in rotating detonation engines
,”
Shock Waves
29
,
471
485
(
2019
).
34.
Y.
Zhang
,
Z.
Sheng
,
G.
Rong
,
D.
Shen
,
K.
Wu
, and
J.
Wang
, “
Experimental research on the performance of hollow and annular rotating detonation engines with nozzles
,”
Appl. Therm. Eng.
218
,
119339
(
2023
).
35.
N. N.
Smirnov
,
V. F.
Nikitin
,
L. I.
Stamov
,
E. V.
Mikhalchenko
, and
V. V.
Tyurenkova
, “
Three-dimensional modeling of rotating detonation in a ramjet engine
,”
Acta Astronaut.
163
,
168
176
(
2019
).
36.
A.
Kawasaki
,
T.
Inakawa
,
J.
Ka sahara
,
K.
Goto
,
K.
Matsuoka
,
A.
Matsuo
et al, “
Critical condition of inner cylinder radius for sustaining rotating detonation waves in rotating detonation engine thruster
,”
Proc. Combust. Inst.
37
,
3461
3469
(
2019
).
37.
Y.
Wang
and
J.
Le
, “
A hollow combustor that intensifies rotating detonation
,”
Aerosp. Sci. Technol.
85
,
113
124
(
2019
).
38.
N. N.
Smirnov
,
V. F.
Nikitin
,
L. I.
Stamov
,
E. V.
Mikhalchenko
, and
V. V.
Tyurenkova
, “
Rotating detonation in a ramjet engine three-dimensional modeling
,”
Aerosp. Sci. Technol.
81
,
213
224
(
2018
).
39.
D.
Shen
,
M.
Cheng
,
K.
Wu
,
Z.
Sheng
, and
J.
Wang
, “
Effects of supersonic nozzle guide vanes on the performance and flow structures of a rotating detonation combustor
,”
Acta Astronaut.
193
,
90
(
2022
).
40.
G.
Rong
,
M.
Cheng
,
Z.
Sheng
,
X.
Liu
,
Y.
Zhang
, and
J.
Wang
, “
The behavior of the propagating velocity of rotating detonation waves and counter-rotating shock waves in a hollow combustor
,”
Acta Astronaut.
200
,
371
387
(
2022
).
41.
D. A.
Schwer
,
K.
Kailasanath
, and
T.
Kaemming
, “
Pressure characteristics of a ram-RDE diffuser
,”
Aerosp. Sci. Technol.
85
,
187
198
(
2019
).
42.
D.
Shen
,
J. Z.
Ma
,
Z.
Sheng
,
G.
Rong
,
K.
Wu
,
Y.
Zhang
et al, “
Spinning pulsed detonation in rotating detonation engine
,”
Aerosp. Sci. Technol.
126
,
107661
(
2022
).
43.
Y.
Wang
,
J.
Le
,
C.
Wang
, and
Y.
Zheng
, “
A non-premixed rotating detonation engine using ethylene and air
,”
Appl. Therm. Eng.
137
,
749
757
(
2018
).
44.
X.-J.
He
,
X.-Y.
Liu
, and
J.-P.
Wang
, “
Numerical study of the mechanisms of the longitudinal pulsed detonation in two-dimensional rotating detonation combustors
,”
Phys. Fluids
35
,
036123
(
2023
).
45.
D. S.
Kumar
and
A. V.
Singh
, “
RP2-1 and RP2-2 propellants powered rotating detonation waves for applications in rocket motors
,”
AIP Conf. Proc.
2584
,
030011
(
2023
).
46.
M.
Zhao
,
K.
Wang
,
Y.
Zhu
,
Z.
Wang
,
Y.
Yan
,
Y.
Wang
et al, “
Effects of the exit convergent ratio on the propagation behavior of rotating detonations utilizing liquid kerosene
,”
Acta Astronaut.
193
,
35
43
(
2022
).
47.
H.
Meng
,
Q.
Zheng
,
C.
Weng
,
Y.
Wu
,
W.
Feng
,
G.
Xu
et al, “
Propagation mode analysis of rotating detonation waves fueled by liquid kerosene
,”
Acta Astronaut.
187
,
248
258
(
2021
).
48.
M. W.
Hoeper
,
A. M.
Webb
,
V.
Athmanathan
,
R. B.
Wang
,
H.
Douglas Perkins
,
S.
Roy
et al, “
Liquid fuel refill dynamics in a rotating detonation combustor using megahertz planar laser-induced fluorescence
,”
Proc. Combust. Inst.
39
,
3051
3061
(
2023
).
49.
F. A.
Bykovskii
,
S. A.
Zhdan
,
E. F.
Vedernikov
, and
Y.
Zholobov
, “
Detonation combustion of coal
,”
Combust., Explos. Shock Waves
48
,
203
208
(
2012
).
50.
F. A.
Bykovskii
,
S. A.
Zhdan
,
E. F.
Vedernikov
, and
Y.
Zholobov
, “
Detonation burning of anthracite and lignite particles in a flow-type radial combustor
,”
Combust., Explos. Shock Waves
52
,
703
712
(
2016
).
51.
F. A.
Bykovskii
,
E. F.
Vedernikov
, and
Y.
Zholobov
, “
Detonation combustion of lignite with titanium dioxide and water additives in air
,”
Combust., Explos. Shock Waves
53
,
453
460
(
2017
).
52.
I. B.
Dunn
,
V.
Malik
,
W.
Flores
,
A.
Morales
, and
K. A.
Ahmed
, “
Experimental and theoretical analysis of carbon driven detonation waves in a heterogeneously premixed rotating detonation engine
,”
Fuel
302
,
121128
(
2021
).
53.
I.
Dunn
,
W.
Flores
,
A.
Morales
,
V.
Malik
, and
K.
Ahmed
, “
Carbon-based multi-phase rotating detonation engine
,”
J. Energy Resour. Technol.
144
,
042101
(
2022
).
54.
M.
Salvadori
,
I. B.
Dunn
,
J.
Sosa
,
S.
Menon
, and
K. A.
Ahmed
, “
Numerical investigation of shock-induced combustion of coal-H2-air mixtures in a unwrapped non-premixed detonation channel
,” in
Proceedings of AIAA Scitech 2020 Forum, Orlando, FL
(
American Institute of Aeronautics and Astronautics
,
2020
), p.
2159
.
55.
C. T.
Crowe
,
J. D.
Schwarzkopf
,
M.
Sommerfeld
, and
Y.
Tsuji
,
Multiphase Flows with Droplets and Particles
(
CRC Press
,
New York, USA
,
1998
).
56.
G. B.
Macpherson
,
N.
Nordin
, and
H. G.
Weller
, “
Particle tracking in unstructured, arbitrary polyhedral meshes for use in CFD and molecular dynamics
,”
Commun. Numer. Methods Eng.
25
,
263
273
(
2009
).
57.
H.
Watanabe
,
A.
Matsuo
,
K.
Matsuoka
,
A.
Kawasaki
, and
J.
Kasahara
, “
Numerical investigation on propagation behavior of gaseous detonation in water spray
,”
Proc. Combust. Inst.
37
,
3617
3626
(
2019
).
58.
M.
Sontheimer
,
A.
Kronenburg
, and
O. T.
Stein
, “
Grid dependence of evaporation rates in Euler–Lagrange simulations of dilute sprays
,”
Combust. Flame
232
,
111515
(
2021
).
59.
K.
Luo
,
O.
Desjardins
, and
H.
Pitsch
, “
DNS of droplet evaporation and combustion in a swirling combustor
,”
2008
.
60.
M. M.
Baum
and
P. J.
Street
, “
Predicting the combustion behaviour of coal particles
,”
Combust. Sci. Technol.
3
,
231
243
(
1971
).
61.
M. A.
Field
, “
Rate of combustion of size-graded fractions of char from a low-rank coal between 1200°K and 2000°K
,”
Combust. Flame
13
,
237
252
(
1969
).
62.
A. D.
Gosman
and
E.
loannides
, “
Aspects of computer simulation of liquid-fueled combustors
,”
J. Energy
7
,
482
490
(
1983
).
63.
M.
Zhao
,
J.-M.
Li
,
C. J.
Teo
,
B. C.
Khoo
, and
H.
Zhang
, “
Effects of variable total pressures on instability and extinction of rotating detonation combustion
,”
Flow, Turbul. Combust.
104
,
261
290
(
2020
).
64.
X.-Y.
Liu
,
M.-Y.
Luan
,
Y.-L.
Chen
, and
J.-P.
Wang
, “
Propagation behavior of rotating detonation waves with premixed kerosene/air mixtures
,”
Fuel
294
,
120253
(
2021
).
65.
M.
Zhao
and
H.
Zhang
, “
Origin and chaotic propagation of multiple rotating detonation waves in hydrogen/air mixtures
,”
Fuel
275
,
117986
(
2020
).
66.
X.-Y.
Liu
,
M.-Y.
Luan
,
Y.-L.
Chen
, and
J.-P.
Wang
, “
Flow-field analysis and pressure gain estimation of a rotating detonation engine with banded distribution of reactants
,”
Int. J. Hydrogen Energy
45
,
19976
19988
(
2020
).
67.
M.
Ó Conaire
,
H. J.
Curran
,
J. M.
Simmie
,
W. J.
Pitz
, and
C. K.
Westbrook
, “
A comprehensive modeling study of hydrogen oxidation: A comprehensive modeling study of hydrogen oxidation
,”
Int. J. Chem. Kinet.
36
,
603
622
(
2004
).
68.
L.
Chen
,
S. Z.
Yong
, and
A. F.
Ghoniem
, “
Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling
,”
Prog. Energy Combust. Sci.
38
,
156
214
(
2012
).
69.
Z.-J.
Xia
,
Z.-H.
Sheng
,
D.-W.
Shen
, and
J.-P.
Wang
, “
Numerical investigation of pre-detonator in rotating detonation engine
,”
Int. J. Hydrogen Energy
46
,
31428
31438
(
2021
).
70.
N. N.
Smirnov
,
V. B.
Betelin
,
R. M.
Shagaliev
,
V. F.
Nikitin
,
I. M.
Belyakov
,
Y.
Deryuguin
et al, “
Hydrogen fuel rocket engines simulation using LOGOS code
,”
Int. J. Hydrogen Energy
39
,
10748
10756
(
2014
).
71.
N. N.
Smirnov
,
V. B.
Betelin
,
V. F.
Nikitin
,
L. I.
Stamov
, and
D. I.
Altoukhov
, “
Accumulation of errors in numerical simulations of chemically reacting gas dynamics
,”
Acta Astronaut.
117
,
338
355
(
2015
).
72.
S.
Paterson
, “
The reflection of a plane shock wave at a gaseous interface
,”
Proc. Phys. Soc.
61
,
119
(
1948
).
You do not currently have access to this content.