A novel supersonic jet oscillating method is investigated both experimentally and numerically. A rectangular primary supersonic jet is issued into a confined chamber with sudden enlargement. Secondary control jets are issued from the top and bottom backward-facing step regions formed due to sudden enlargement. The primary jet is oscillated in the transverse direction by blowing the secondary jets in the streamwise direction in a pulsating manner with a phase shift. The out-of-phase secondary jet blowing causes the primary jet to periodically adhere to the upper and lower part of the confined chamber, causing flapping of the primary jet and acting as a supersonic fluidic oscillator. The supersonic jet oscillation characteristics are experimentally investigated using shadowgraph type flow visualization technique and steady and unsteady pressure measurements. Quantitative analysis of the shadowgraph images using the construction of yt and yf plots reveals the presence of periodic jet oscillation with a discrete dominant frequency similar to the secondary jet excitation frequency. The existence of linearity between the excitation frequency and the flapping jet frequency on the low-frequency ( 0.66 6.6 Hz) side is first proven experimentally. Later, the high-frequency ( 16.67 5000 Hz) operation extent of the supersonic fluidic oscillator is further demonstrated using unsteady computational studies owing to the existing experimental facility's limitations. A reduced-order analytical framework has also been proposed to investigate the limiting oscillation frequency. It is found that the limiting frequency predicted from the proposed analytical model shows fairly good agreement with the computationally predicted results (5 kHz).

1.
X.
Wen
,
Z.
Li
,
L.
Zhou
,
C.
Yu
,
Z.
Muhammad
,
Y.
Liu
,
S.
Wang
, and
Y.
Liu
, “
Flow dynamics of a fluidic oscillator with internal geometry variations
,”
Phys. Fluids
32
,
075111
(
2020
).
2.
D.
Veerasamy
,
A. R.
Tajik
,
L.
Pastur
, and
V.
Parezanović
, “
Effect of base blowing by a large-scale fluidic oscillator on the bistable wake behind a flat-back Ahmed body
,”
Phys. Fluids
34
,
035115
(
2022
).
3.
O. P.
Ayeni
and
B.
Cleton
, “
Aspect ratio and combined installation in fluidic oscillator-crossflow interactions
,”
Phys. Fluids
34
,
115124
(
2022
).
4.
L.
Xia
,
Y.
Hua
, and
J. G.
Zheng
, “
Numerical investigation of flow separation control over an airfoil using fluidic oscillator
,”
Phys. Fluids
33
,
065107
(
2021
).
5.
S.-H.
Kim
and
K.-Y.
Kim
, “
Effects of installation location of fluidic oscillators on aerodynamic performance of an airfoil
,”
Aerosp. Sci. Technol.
99
,
105735
(
2020
).
6.
M.
DeSalvo
,
E.
Whalen
, and
A.
Glezer
, “
High-lift enhancement using fluidic actuation
,” AIAA Paper No. 2010-863,
2010
.
7.
A.
Shmilovich
,
Y.
Yadlin
,
E. D.
Dickey
,
P. M.
Hartwich
, and
A.
Khodadoust
, “
Development of an active flow control technique for an airplane high-lift configuration
,” AIAA Paper No. 2017-0322,
2017
.
8.
V.
Kibens
,
I. J.
Dorris
,
D.
Smith
, and
M.
Mossman
, “
Active flow control technology transition—The boeing ACE program
,” AIAA Paper No. 1999-3507,
1999
.
9.
G.
Raman
and
S.
Raghu
, “
Cavity resonance suppression using miniature fluidic oscillators
,”
AIAA J.
42
,
2608
2612
(
2004
).
10.
Y.
Wu
,
S.
Yu
, and
L.
Zuo
, “
Large eddy simulation analysis of the heat transfer enhancement using self-oscillating fluidic oscillators
,”
Int. J. Heat Mass Transfer
131
,
463
471
(
2019
).
11.
A.
Suresh
and
A. K.
Rajagopal
, “
An active mixing enhancement technique in supersonic ejectors using pulsed streamwise injections
,”
Phys. Fluids
35
,
076111
(
2023
).
12.
A.
Arote
,
M.
Bade
, and
J.
Banerjee
, “
Numerical investigations on stability of the spatially oscillating planar two-phase liquid jet in a quiescent atmosphere
,”
Phys. Fluids
31
,
112103
(
2019
).
13.
H.
Viets
, “
Flip-flop jet nozzle
,”
AIAA J.
13
,
1375
1379
(
1975
).
14.
G.
Raman
,
M.
Hailye
, and
E. J.
Rice
, “
Flip-flop jet nozzle extended to supersonic flows
,”
AIAA J.
31
,
1028
1035
(
1993
).
15.
D.
Parekh
,
V.
Kibens
,
A.
Glezer
,
J.
Wiltse
, and
D.
Smith
, “
Innovative jet flow control—Mixing enhancement experiments
,” AIAA Paper No. 1996-308,
1996
.
16.
C.
Camci
and
F.
Herr
, “
Forced convection heat transfer enhancement using a self-oscillating impinging planar jet
,”
J. Heat Transfer
124
,
770
782
(
2002
).
17.
M. N.
Tomac
and
J. W.
Gregory
, “
Oscillation characteristics of mutually impinging dual jets in a mixing chamber
,”
Phys. Fluids
30
,
117102
(
2018
).
18.
S.
Raghu
, “
Feedback-free fluidic oscillator and method
,” U.S. patent US6253782 B1 (
1999
).
19.
C.
Campagnuolo
and
H.
Lee
, “
Review of some fluid oscillator
,” US Army Material Command, Harry Diamond Laboratories, 1969.
20.
S.
Gokoglu
,
M.
Kuczmarski
,
D.
Culley
, and
S.
Raghu
, “
Numerical studies of an array of fluidic diverter actuators for flow control
,” AIAA Paper No. 2011-3100,
2011
.
21.
S.
Raghu
, “
Fluidic oscillators for flow control
,”
Exp. Fluids
54
,
1455
(
2013
).
22.
V.
Vatsa
,
M.
Koklu
, and
I.
Wygnanski
, “
Numerical simulation of fluidic actuators for flow control applications
,” AIAA Paper No. 2012-3239,
2012
.
23.
B. C.
Bobusch
,
R.
Woszidlo
,
J. M.
Bergada
,
C. N.
Nayeri
, and
C. O.
Paschereit
, “
Experimental study of the internal flow structures inside a fluidic oscillator
,”
Exp. Fluids
54
,
1559
(
2013
).
24.
Y.
Sang
,
Y.
Shan
,
H.
Lei
,
X.
Tan
, and
J.
Zhang
, “
Effects of geometric parameters on the physical mechanisms of supersonic fluidic oscillators
,”
Energies
13
,
3919
(
2020
).
25.
C.
Xu
and
X.
Meng
, “
Performance characteristic curve insensitive to feedback fluidic oscillator configurations
,”
Sens. Actuators A
189
,
55
60
(
2013
).
26.
V.
Tesař
,
C.-H.
Hung
, and
W. B.
Zimmerman
, “
No-moving-part hybrid-synthetic jet actuator
,”
Sens. Actuators A
125
,
159
169
(
2006
).
27.
J.-T.
Yang
,
C.-K.
Chen
,
K.-J.
Tsai
,
W.-Z.
Lin
, and
H.-J.
Sheen
, “
A novel fluidic oscillator incorporating step-shaped attachment walls
,”
Sens. Actuators A
135
,
476
483
(
2007
).
28.
V.
Tesař
,
S.
Zhong
, and
F.
Rasheed
, “
New fluidic-oscillator concept for flow-separation control
,”
AIAA J.
51
,
397
405
(
2013
).
29.
V.
Tesař
, “
High-frequency fluidic oscillator
,”
Sens. Actuators A
234
,
158
167
(
2015
).
30.
L. N.
Cattafesta
and
M.
Sheplak
, “
Actuators for active flow control
,”
Annu. Rev. Fluid Mech.
43
,
247
272
(
2011
).
31.
L.
Wang
,
Z.
Luo
,
Z.
Xia
,
B.
Liu
, and
X.
Deng
, “
Review of actuators for high speed active flow control
,”
Sci. China Technol. Sci.
55
,
2225
2240
(
2012
).
32.
E.
Phillips
,
R.
Woszidlo
, and
I.
Wygnanski
, “
The dynamics of separation control on a rapidly actuated flap
,” AIAA Paper No. 2010-4246,
2010
.
33.
F.
Ostermann
,
R.
Woszidlo
,
C. N.
Nayeri
, and
C. O.
Paschereit
, “
The interaction between a spatially oscillating jet emitted by a fluidic oscillator and a cross-flow
,”
J. Fluid Mech.
863
,
215
241
(
2019
).
34.
S.
Ghanami
and
M.
Farhadi
, “
Heat transfer enhancement in a single-pipe heat exchanger with fluidic oscillators
,”
J. Therm. Anal. Calorim.
140
,
1107
1119
(
2020
).
35.
D.
Feikema
and
D.
Culley
, “
Computational fluid dynamic modeling of a fluidic actuator for flow control
,” AIAA Paper No. 2008-557,
2008
.
36.
S.
Maikap
,
R. A.
Kumar
, and
H. B.
Kothadia
, “
Active flow control of supersonic jet using streamwise pulsed blowing
,”
AIAA J.
60
,
5150
5164
(
2022
).
37.
R.
Arun Kumar
and
G.
Rajesh
, “
Physics of vacuum generation in zero-secondary flow ejectors
,”
Phys. Fluids
30
,
066102
(
2018
).
38.
M.
Raju
,
S. L. N.
Desikan
, and
A.
Vaidyanathan
, “
Transient characteristics of a typical vacuum ejector—An experimental study
,”
Phys. Fluids
34
,
096108
(
2022
).
39.
G. S.
Settles
,
Schlieren and Shadowgraph Techniques
(
Springer
,
Berlin Heidelberg
,
2001
).
40.
H. W.
Coleman
and
W. G.
Steele
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
(
John Wiley & Sons, Inc.
,
2009
).
41.
Y.
Bartosiewicz
,
Z.
Aidoun
,
P.
Desevaux
, and
Y.
Mercadier
, “
CFD-experiments integration in the evaluation of six turbulence models for supersonic ejectors modeling
,” in Integrating CFD and Experiments Conference, Glasgow, UK, 2003.
42.
J.
Kolář
and
V.
Dvořák
, “
Verification of k-ω SST turbulence model for supersonic internal flows
,”
Int. J. Mech. Mechatron. Eng.
5
,
1715
1719
(
2011
).
43.
A. K.
Rajagopal
,
H. D.
Kim
, and
T.
Setoguchi
, “
Effect of finite diaphragm rupture process on microshock tube flows
,”
J. Fluids Eng.
135
,
081203
(
2013
).
44.
G.
Sivaprasad
,
G.
Rajesh
,
T.
Jayachandran
, and
A. K.
Rajagopal
, “
Strong shock solutions in symmetric wedge flows: Unphysical or unstable?
Phys. Fluids
35
,
066104
(
2023
).
45.
S. K.
Karthick
, “
Shock and shear layer interactions in a confined supersonic cavity flow
,”
Phys. Fluids
33
,
066102
(
2021
).
46.
S. K.
Karthick
,
D.
Bhelave
, and
A.
De
, “
Supersonic flow unsteadiness induced by control surface deflections
,”
Phys. Fluids
35
,
016105
(
2023
).
47.
M. I.
Sugarno
,
R.
Sriram
,
S. K.
Karthick
, and
G.
Jagadeesh
, “
Unsteady pulsating flowfield over spiked axisymmetric forebody at hypersonic flows
,”
Phys. Fluids
34
,
016104
(
2022
).
48.
R.
Arun Kumar
and
G.
Rajesh
, “
Flow transients in un-started and started modes of vacuum ejector operation
,”
Phys. Fluids
28
,
056105
(
2016
).
49.
R.
Arun Kumar
and
G.
Rajesh
, “
Effect of geometric configurations on the starting transients in vacuum ejector
,”
AIAA J.
57
,
2905
2922
(
2019
).
You do not currently have access to this content.