Modification of titanium microstructure after propagation of a melting shock wave (SW) generated by a femtosecond laser pulse is investigated experimentally and analyzed using hydrodynamic and atomistic simulations. Scanning and transmission electron microscopy with analysis of microdiffraction is used to determine the microstructure of modified subsurface layers of titanium. We found that two layers are modified beneath the surface. A top surface polycrystalline layer of nanoscale grains is formed from shock-molten material via rapid crystallization. In a deeper subsurface layer, where the shock-induced melting changes into plastic deformation due to attenuation of SW, the grain structure of solid is considerably affected, which results in a grain size distribution differing from that in the intact titanium. Molecular dynamics simulation of single-crystal titanium reveals that the SW front continues to melt even after its temperature drops below the melting curve T m ( P ). The enormous shear stress of 12 GPa generated in a narrow SW front leads to free slip of atomic planes, collapse of the crystal lattice, and formation of a supercooled metastable melt. Such melt crystallizes in an unloading tail of SW. The mechanical melting ceases after drop in the shear stress giving rise to the shock-induced plastic deformation. The last process triggers a long-term rearrangement of atomic structures in solid. The overall depth of modified layers is limited by SW attenuation to the Hugoniot elastic limit and can reach several micrometers. The obtained results reveal the basic physical mechanisms of surface hardening of metals by ultrashort laser pulses.

1.
Y. R.
Kolobov
, “
Regularities and mechanisms of formation of submicro-, nano-, and ultrafine-grained structures and mechanical properties of metals and alloys under different treatments
,”
Russ. Phys. J.
61
,
611
623
(
2018
).
2.
S. I.
Ashitkov
,
N. A.
Inogamov
,
V. V.
Zhakhovskii
,
Y. N.
Emirov
,
M. B.
Agranat
,
I. I.
Oleinik
,
S. I.
Anisimov
, and
V. E.
Fortov
, “
Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse
,”
JETP Lett.
95
,
176
181
(
2012
).
3.
E. Y.
Loktionov
,
A. V.
Ovchinnikov
,
Y. S.
Protasov
,
Y. Y.
Protasov
, and
D. S.
Sitnikov
, “
Gas-plasma flows under femtosecond laser ablation for metals in vacuum
,”
High Temp.
52
,
132
134
(
2014
).
4.
N. A.
Inogamov
,
V. V.
Zhakhovsky
,
V. A.
Khokhlov
,
Y. V.
Petrov
, and
K. P.
Migdal
, “
Solitary nanostructures produced by ultrashort laser pulse
,”
Nanoscale Res. Lett.
11
,
177
(
2016
).
5.
A. Y.
Vorobyev
and
C.
Guo
, “
Direct femtosecond laser surface nano/microstructuring and its applications
,”
Laser Photonics Rev.
7
,
385
407
(
2013
).
6.
V. P.
Veiko
,
Y.
Andreeva
,
L. V.
Cuong
,
D.
Lutoshina
,
D.
Polyakov
,
D.
Sinev
,
V.
Mikhailovskii
,
Y. R.
Kolobov
, and
G.
Odintsova
, “
Laser paintbrush as a tool for modern art
,”
Optica
8
,
577
585
(
2021
).
7.
R.
Fabbro
,
J.
Fournier
,
P.
Ballard
,
D.
Devaux
, and
J.
Virmont
, “
Physical study of laser-produced plasma in confined geometry
,”
J. Appl. Phys.
68
,
775
784
(
1990
).
8.
C.
Correa
,
D.
Peral
,
J. A.
Porro
,
M.
Díaz
,
L.
Ruiz de Lara
,
A.
García-Beltrán
, and
J. L.
Ocaña
, “
Random-type scanning patterns in laser shock peening without absorbing coating in 2024-T351 Al alloy: A solution to reduce residual stress anisotropy
,”
Opt. Laser Technol.
73
,
179
187
(
2015
).
9.
A. Y.
Tokmacheva-Kolobova
, “
Investigation of the mechanism of nanostructuring of near-surface titanium layers under the influence of nanosecond laser pulses
,”
Tech. Phys. Lett.
47
,
143
146
(
2021
).
10.
W.
Jia
,
Q.
Hong
,
H.
Zhao
,
L.
Li
, and
D.
Han
, “
Effect of laser shock peening on the mechanical properties of a near-α titanium alloy
,”
Mater. Sci. Eng., A
606
,
354
359
(
2014
).
11.
Y. R.
Kolobov
,
S. S.
Manokhin
,
G. V.
Odintsova
,
V. I.
Betekhtin
,
A. G.
Kadomtsev
, and
M. V.
Narykova
, “
Studying the influence of nanosecond pulsed laser action on the structure of submicrocrystalline titanium
,”
Tech. Phys. Lett.
47
,
721
725
(
2021
).
12.
Y. R.
Kolobov
,
S. S.
Manokhin
,
V.
Betekhtin
,
A.
Kadomtsev
,
M.
Narykova
,
G.
Odintsova
, and
G.
Khramov
, “
Investigation of the effect of treatment with nanosecond laser pulses on the microstructure and fatigue resistance of commercially pure titanium
,”
Tech. Phys. Lett.
48
,
56
59
(
2022
).
13.
M.
Tsujino
,
T.
Sano
,
T.
Ogura
,
M.
Okoshi
,
N.
Inoue
,
N.
Ozaki
,
R.
Kodama
,
K. F.
Kobayashi
, and
A.
Hirose
, “
Formation of high-density dislocations and hardening in femtosecond-laser-shocked silicon
,”
Appl. Phys. Express
5
,
022703
(
2012
).
14.
T.
Matsuda
,
T.
Sano
,
K.
Arakawa
, and
A.
Hirose
, “
Multiple-shocks induced nanocrystallization in iron
,”
Appl. Phys. Lett.
105
,
021902
(
2014
).
15.
U.
Trdan
,
T.
Sano
,
D.
Klobčar
,
Y.
Sano
,
J.
Grum
, and
R.
Šturm
, “
Improvement of corrosion resistance of AA2024-T3 using femtosecond laser peening without protective and confining medium
,”
Corros. Sci.
143
,
46
55
(
2018
).
16.
T.
Kawashima
,
T.
Sano
,
A.
Hirose
,
S.
Tsutsumi
,
K.
Masaki
,
K.
Arakawa
, and
H.
Hori
, “
Femtosecond laser peening of friction stir welded 7075-T73 aluminum alloys
,”
J. Mater. Process. Technol.
262
,
111
122
(
2018
).
17.
T.
Sano
,
T.
Eimura
,
R.
Kashiwabara
,
T.
Matsuda
,
Y.
Isshiki
,
A.
Hirose
,
S.
Tsutsumi
,
K.
Arakawa
,
T.
Hashimoto
,
K.
Masaki
, and
Y.
Sano
, “
Femtosecond laser peening of 2024 aluminum alloy without a sacrificial overlay under atmospheric conditions
,”
J. Laser Appl.
29
,
012005
(
2017
).
18.
E.
Ageev
,
Y.
Andreeva
,
A.
Ionin
,
N.
Kashaev
,
S.
Kudryashov
,
N.
Nikonorov
,
R.
Nuryev
,
A.
Petrov
,
A.
Rudenko
,
A.
Samokhvalov
,
I.
Saraeva
, and
V.
Veiko
, “
Single-shot femtosecond laser processing of Al-alloy surface: An interplay between Mbar shock waves, enhanced microhardness, residual stresses, and chemical modification
,”
Opt. Laser Technol.
126
,
106131
(
2020
).
19.
Y.
Lian
,
Y.
Hua
,
J.
Sun
,
Q.
Wang
,
Z.
Chen
,
F.
Wang
,
K.
Zhang
,
G.
Lin
,
Z.
Yang
,
Q.
Zhang
, and
L.
Jiang
, “
Martensitic transformation in temporally shaped femtosecond laser shock peening 304 steel
,”
Appl. Surf. Sci.
567
,
150855
(
2021
).
20.
Y.
Li
,
Z.
Ren
,
X.
Jia
,
W.
Yang
,
N.
Nassreddin
,
Y.
Dong
,
C.
Ye
,
A.
Fortunato
, and
X.
Zhao
, “
The effects of the confining medium and protective layer during femtosecond laser shock peening
,”
Manuf. Lett.
27
,
26
30
(
2021
).
21.
Y. X.
Ye
,
Y. Y.
Feng
,
Z. C.
Lian
, and
Y. Q.
Hua
, “
Plastic deformation mechanism of polycrystalline copper foil shocked with femtosecond laser
,”
Appl. Surf. Sci.
309
,
240
249
(
2014
).
22.
H.
Zhang
,
Z.
Ren
,
J.
Liu
,
J.
Zhao
,
Z.
Liu
,
D.
Lin
,
R.
Zhang
,
M. J.
Graber
,
N. K.
Thomas
,
Z. D.
Kerek
,
G.-X.
Wang
,
Y.
Dong
, and
C.
Ye
, “
Microstructure evolution and electroplasticity in Ti64 subjected to electropulsing-assisted laser shock peening
,”
J. Alloys Compd.
802
,
573
582
(
2019
).
23.
Z.
Henis
and
S.
Eliezer
, “
Melting phenomenon in laser-induced shock waves
,”
Phys. Rev. E
48
,
2094
2097
(
1993
).
24.
M. E.
Povarnitsyn
,
K. V.
Khishchenko
, and
P. R.
Levashov
, “
Simulation of shock-induced fragmentation and vaporization in metals
,”
Int. J. Impact Eng.
35
,
1723
1727
(
2008
).
25.
M. M.
Budzevich
,
V. V.
Zhakhovsky
,
C. T.
White
, and
I. I.
Oleynik
, “
Evolution of shock-induced orientation-dependent metastable states in crystalline aluminum
,”
Phys. Rev. Lett.
109
,
125505
(
2012
).
26.
P.
Qiu
,
T.
Sun
, and
Y.
Feng
, “
Observation of the solid and liquid separation after the shock propagation in a two-dimensional Yukawa solid
,”
Phys. Plasmas
28
,
113702
(
2021
).
27.
M. B.
Agranat
,
S. I.
Ashitkov
,
A. A.
Ivanov
,
A. V.
Konyashchenko
,
A. V.
Ovchinnikov
, and
V. E.
Fortov
, “
Terawatt femtosecond Cr: Forsterite laser system
,”
Quantum Electron.
34
,
506
508
(
2004
).
28.
J. M.
Liu
, “
Simple technique for measurements of pulsed Gaussian-beam spot sizes
,”
Opt. Lett.
7
,
196
(
1982
).
29.
E.
Montoya
,
S.
Bals
,
M. D.
Rossell
,
D.
Schryvers
, and
G.
Van Tendeloo
, “
Evaluation of top, angle, and side cleaned FIB samples for TEM analysis
,”
Microsc. Res. Tech.
70
,
1060
1071
(
2007
).
30.
V. A.
Khokhlov
,
V. V.
Zhakhovsky
,
N. A.
Inogamov
,
S. I.
Ashitkov
,
D. S.
Sitnikov
,
K. V.
Khishchenko
,
Y. V.
Petrov
,
S. S.
Manokhin
,
I. V.
Nelasov
,
V. V.
Shepelev
, and
Y. R.
Kolobov
, “
Melting of titanium by a shock wave generated by an intense femtosecond laser pulse
,”
JETP Lett.
115
,
523
530
(
2022
).
31.
J. J.
Liu
, “
Advances and applications of atomic-resolution scanning transmission electron microscopy
,”
Microsc. Microanal.
27
,
943
995
(
2021
).
32.
S. I.
Anisimov
,
B. L.
Kapeliovich
, and
T. L.
Perel'man
, “
Electron emission from metal surfaces exposed to ultrashort laser pulses
,”
Sov. Phys. JETP
39
,
375
377
(
1974
).
33.
S. I.
Anisimov
,
V. V.
Zhakhovsky
,
N. A.
Inogamov
,
K. P.
Migdal
,
Y. V.
Petrov
, and
V. A.
Khokhlov
, “
High-energy-density physics and laser technologies
,”
J. Exp. Theor. Phys.
129
,
757
782
(
2019
).
34.
K. V.
Khishchenko
, “
Equation of state for titanium at high energy densities
,”
J. Phys.
774
,
012001
(
2016
).
35.
E. V.
Struleva
,
P. S.
Komarov
, and
S. I.
Ashitkov
, “
Thermomechanical ablation of titanium by femtosecond laser irradiation
,”
High Temp.
57
,
486
489
(
2019
).
36.
E. V.
Struleva
,
P. S.
Komarov
, and
S. I.
Ashitkov
, “
Dynamic strength of titanium melt at extremely high extension rates
,”
High Temp.
57
,
948
950
(
2019
).
37.
D.
Errandonea
,
B.
Schwager
,
R.
Ditz
,
C.
Gessmann
,
R.
Boehler
, and
M.
Ross
, “
Systematics of transition-metal melting
,”
Phys. Rev. B
63
,
132104
(
2001
).
38.
V.
Stutzmann
,
A.
Dewaele
,
J.
Bouchet
,
F.
Bottin
, and
M.
Mezouar
, “
High-pressure melting curve of titanium
,”
Phys. Rev. B
92
,
224110
(
2015
).
39.
X. W.
Zhou
,
R. A.
Johnson
, and
H. N. G.
Wadley
, “
Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers
,”
Phys. Rev. B
69
,
144113
(
2004
).
40.
V.
Zhakhovskii
,
K.
Nishihara
,
Y.
Fukuda
et al, “
A new dynamical domain decomposition method for parallel molecular dynamics simulation
,” in
IEEE Proceeding of the 5th International Symposium on Cluster Computing and Grid (CCGrid 2005)
(
IEEE Computer Society
,
2006
), Vol. 2, pp.
848
854
.
41.
M. S.
Egorova
,
S. A.
Dyachkov
,
A. N.
Parshikov
, and
V. V.
Zhakhovsky
, “
Parallel SPH modeling using dynamic domain decomposition and load balancing displacement of Voronoi subdomains
,”
Comput. Phys. Commun.
234
,
112
125
(
2019
).
42.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
, “
Bond-orientational order in liquids and glasses
,”
Phys. Rev. B
28
,
784
805
(
1983
).
43.
V. V.
Zhakhovsky
,
K. P.
Migdal
,
N. A.
Inogamov
, and
S. I.
Anisimov
, “
MD simulation of steady shock-wave fronts with phase transition in single-crystal iron
,”
AIP Conf. Proc.
1793
,
070003
(
2017
).
44.
N.
Kovalenko
,
Y.
Krasny
, and
U.
Krey
,
Physics of Amorphous Metals
(
Wiley
,
2008
).
45.
D.
Hull
and
D.
Bacon
,
Introduction to Dislocations
,
5th ed
. (
Butterworth-Heinemann
,
Oxford
,
2011
), p.
257
.
46.
S.
Ogata
,
J.
Li
, and
S.
Yip
, “
Ideal pure shear strength of aluminum and copper
,”
Science
298
,
807
811
(
2002
).
47.
A. E.
Mayer
,
V. S.
Krasnikov
, and
V. V.
Pogorelko
, “
Homogeneous nucleation of dislocations in copper: Theory and approximate description based on molecular dynamics and artificial neural networks
,”
Comput. Mater. Sci.
206
,
111266
(
2022
).
48.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
49.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in 't Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
, “
LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
50.
J.
Jiang
,
X.
Zhang
,
F.
Ma
,
S.
Dong
,
W.
Yang
, and
M.
Wu
, “
Molecular dynamics simulation of the crystal structure evolution of titanium under different Tdamp values and heating/cooling rates
,”
Chem. Phys. Lett.
763
,
138187
(
2021
).
51.
P. M.
Larsen
,
S.
Schmidt
, and
J.
Schiøtz
, “
Robust structural identification via polyhedral template matching
,”
Modell. Simul. Mater. Sci. Eng.
24
,
055007
(
2016
).
52.
T.
Bonald
,
B.
Charpentier
,
A.
Galland
, and
A.
Hollocou
, “
Hierarchical graph clustering using node pair sampling
,” arXiv:1806.01664v2 (
2018
).
53.
I. V.
Nelasov
,
A. I.
Kartamyshev
,
A. O.
Boev
,
A. G.
Lipnitskii
,
Y. R.
Kolobov
, and
T. K.
Nguyen
, “
Molecular dynamics simulation of the behavior of titanium under high-speed deformation
,”
Modell. Simul. Mater. Sci. Eng.
29
,
065007
(
2021
).
54.
R. G.
Hennig
,
T. J.
Lenosky
,
D. R.
Trinkle
,
S. P.
Rudin
, and
J. W.
Wilkins
, “
Classical potential describes martensitic phase transformations between the α, β, and ω titanium phases
,”
Phys. Rev. B
78
,
054121
(
2008
).
55.
A. I.
Kartamyshev
,
A. G.
Lipnitskii
,
V. N.
Saveliev
,
V. N.
Maksimenko
,
I. V.
Nelasov
, and
D. O.
Poletaev
, “
Development of an interatomic potential for titanium with high predictive accuracy of thermal properties up to melting point
,”
Comput. Mater. Sci.
160
,
30
41
(
2019
).
56.
C.
Baruffi
,
A.
Finel
,
Y.
Le Bouar
,
B.
Bacroix
, and
O.
Salman
, “
Atomistic simulation of martensite microstructural evolution during temperature driven β α transition in pure titanium
,”
Comput. Mater. Sci.
203
,
111057
(
2022
).
57.
Y.-M.
Kim
and
B.-J.
Lee
, “
Modified embedded-atom method interatomic potentials for the Ti–C and Ti–N binary systems
,”
Acta Mater.
56
,
3481
3489
(
2008
).
58.
Y.
Estrin
,
L.
Tóth
,
A.
Molinari
, and
Y.
Bréchet
, “
A dislocation-based model for all hardening stages in large strain deformation
,”
Acta Mater.
46
,
5509
5522
(
1998
).
59.
V. S.
Krasnikov
,
A. Y.
Kuksin
,
A. E.
Mayer
, and
A. V.
Yanilkin
, “
Plastic deformation under high-rate loading: The multiscale approach
,”
Phys. Solid State
52
,
1386
1396
(
2010
).
60.
G. A.
Malygin
, “
Dislocation self-organization processes and crystal plasticity
,”
Phys.-Usp.
42
,
887
916
(
1999
).
61.
N. A.
Gracheva
,
M. V.
Lekanov
,
A. E.
Mayer
, and
E. V.
Fomin
, “
Application of neural networks for modeling shock-wave processes in aluminum
,”
Mech. Solids
56
,
326
342
(
2021
).
62.
J.
Hirth
and
J.
Lothe
,
Theory of Dislocations
(
McGraw-Hill
,
1964
).
63.
T.
Suzuki
,
S.
Takeuchi
, and
H.
Yoshinaga
, “
Dislocation dynamics and plasticity
,” in
Springer Series in Materials Science
(
Springer
,
Berlin, Heidelberg
,
1991
).
64.
Y. R.
Kolobov
,
S. S.
Manokhin
,
A. Y.
Kolobova
,
Y. E.
Kudymova
,
V. I.
Betekhtin
,
A. A.
Golyshev
,
A. M.
Molodets
, and
R. A.
Andrievskii
, “
Shock-wave-induced grain refinement and phase state modification in coarse-grained and nanocrystalline titanium
,”
Tech. Phys. Lett.
42
,
959
962
(
2016
).
65.
R. A.
Austin
and
D. L.
McDowell
, “
A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates
,”
Int. J. Plast.
27
,
1
24
(
2011
).
66.
S.
Yao
,
X.
Pei
,
J.
Yu
, and
Q.
Wu
, “
Assessment of the time-dependent behavior of dislocation multiplication under shock loading
,”
Int. J. Plast.
158
,
103434
(
2022
).
You do not currently have access to this content.