There are fewer reports on the impinging shock/boundary layer interaction in the high Mach number and high-temperature flow than that in the supersonic flow. High-temperature flow characteristics of the impinging shock/flat-plate turbulent boundary layer interaction (IS/FTBLI) at Mach 8.42 are numerically investigated by solving two-dimensional Reynolds averaged Navier–Stokes equations coupling with the thermal–chemical non-equilibrium model. An impinging shock is formed by the wedge with a 10° deflection angle. The inviscid flow parameters ahead of the cowl of a Mach 12 inlet are selected as the free-stream condition of this study. The primary emphasis of this study lies in understanding the thermal–chemical non-equilibrium effects in the IS/FTBLI. Moreover, the chemical non-equilibrium effects similar to previous reports from others are utilized for the comparative analysis. Our findings reveal that the vibrational or thermal non-equilibrium effects exhibit maximum prominence subsequent to the intersection of the impinging shock with separation shock, as well as in the convergence area of compression waves during the flow reattachment. On the other hand, the chemical non-equilibrium effects predominantly result from oxygen dissociation and atomic nitrogen production within the boundary layer; the chemical reactions are most intense within the separation zone. By comparing with a thermally perfect gas, a reduction in the flow separation is observed in the chemical non-equilibrium effects, but the flow separation is enhanced in the thermal–chemical non-equilibrium effects. The insights gained from our research are expected to contribute to the development of flow control technology in hypersonic IS/FTBLI scenarios and aid in configuring wave structures in the inner compression section of high Mach number scramjet inlets.

1.
K. R.
Sekar
,
S. K.
Karthick
,
S.
Jegadheeswaran
et al, “
On the unsteady throttling dynamics and scaling analysis in a typical hypersonic inlet-isolator flow
,”
Phys. Fluids
32
(
12
),
126104
(
2020
).
2.
M.
Devaraj
,
P.
Jutur
,
S.
Rao
et al, “
Experimental investigation of unstart dynamics driven by subsonic spillage in a hypersonic scramjet intake at Mach 6
,”
Phys. Fluids
32
(
2
),
026103
(
2020
).
3.
V.
Sethuraman
and
Y.
Yang
et al, “
Interaction of shock train with cavity shear layer in a scramjet isolator
,”
Phys. Fluids
35
(
3
),
036111
(
2023
).
4.
J. K.
James
and
H. D.
Kim
, “
Oscillatory behaviors of multiple shock waves to upstream disturbances
,”
Phys. Fluids
35
(
5
),
056113
(
2023
).
5.
Y.
Wang
,
Y. P.
Wang
, and
Z. L.
Jiang
, “
Experimental study of longitudinal stage separation of two-body configuration in shock tunnel
,”
AIAA J.
60
,
6940
6946
(
2022
).
6.
H. J.
Tan
and
R.
Guo
, “
Experimental study of the unstable-unstarted condition of a hypersonic inlet at Mach 6
,”
J. Propul. Power
23
(
4
),
783
788
(
2007
).
7.
Q. F.
Zhang
,
H. J.
Tan
,
H.
Chen
et al, “
Unstart process of a rectangular hypersonic inlet at different Mach numbers
,”
AIAA J.
54
(
12
),
3681
3691
(
2016
).
8.
M. K.
Smart
, “
How much compression should a scramjet inlet do?
,”
AIAA J.
50
(
3
),
610
619
(
2012
).
9.
H. J.
Tan
,
S.
Sun
, and
Z. L.
Yin
, “
Oscillatory flows of rectangular hypersonic inlet unstart caused by downstream mass-flow choking
,”
J. Propul. Power
25
(
1
),
138
147
(
2009
).
10.
W.
Li
,
D.
Zhao
,
X.
Chen
et al, “
Numerical investigations on solid-fueled ramjet inlet thermodynamic properties effects on generating self-sustained combustion instability
,”
Aerosp. Sci. Technol.
119
,
107097
(
2021
).
11.
W.
Li
,
D.
Zhao
,
L.
Zhang
et al, “
Proper orthogonal and dynamic mode decomposition analyses of nonlinear combustion instabilities in a solid-fuel ramjet combustor
,”
Therm. Sci. Eng. Prog.
27
,
101147
(
2022
).
12.
W.
Li
,
X.
Chen
,
D.
Zhao
et al, “
Swirling effect on thermodynamic performance in a solid fueled ramjet with paraffin-polyethylene
,”
Aerosp. Sci. Technol.
107
,
106341
(
2020
).
13.
A. A.
Ray
and
A.
De
, “
Leading-edge bluntness effects on the hypersonic flow over the double wedge at multiple aft-wedge angles
,”
Phys. Fluids
35
(
5
),
056116
(
2023
).
14.
D.
Arnal
and
J.
Délery
, “
Laminar-turbulent transition and shock wave/boundary layer interaction
,”
Report No. EN-AVT-116-04
(
2004
).
15.
J. J.
Bertin
and
R. M.
Cummings
, “
Critical hypersonic aerothermodynamic phenomena
,”
Annu. Rev. Fluid Mech.
38
(
1
),
129
(
2006
).
16.
Y.
Zhang
,
H. J.
Tan
,
Z.
Yi
et al, “
Influence of expansion waves on cowl shock/boundary layer interaction in hypersonic inlets
,”
J. Propul. Power
30
(
5
),
1183
1191
(
2014
).
17.
F. L.
Tong
,
J.
Lai
,
J. Y.
Duan
et al, “
Effect of interaction strength on recovery downstream of incident shock interactions
,”
Phys. Fluids
34
(
12
),
125127
(
2022
).
18.
K.
Zhu
,
L. X.
Jiang
,
W. D.
Liu
et al, “
Wall temperature effects on shock wave/turbulent boundary layer interaction via direct numerical simulation
,”
Acta Astronaut.
178
,
499
510
(
2021
).
19.
M.
Bernardini
,
I.
Asproulias
,
J.
Larsson
et al, “
Heat transfer and wall temperature effects in shock wave turbulent boundary layer interaction
,”
Phys. Rev. Fluids
1
,
084403
(
2016
).
20.
X.
Li
,
Y.
Zhang
,
H. J.
Tan
et al, “
Comparative study on single-incident and dual-incident shock wave/turbulent boundary layer interactions with identical total deflection angle
,”
J. Fluid Mech.
940
,
A7
(
2022
).
21.
Z.-B.
Du
,
C.-B.
Shen
,
W.
Huang
et al, “
Control mechanism of the three-dimensional shock wave/boundary layer interaction with the steady and pulsed micro-jets in a supersonic crossflow
,”
Phys. Fluids
34
(
8
),
086109
(
2022
).
22.
X.
Ma
,
J.
Fan
,
Y.
Wu
et al, “
Flow control effect of pulsed arc discharge plasma actuation on impinging shock wave/boundary layer interaction
,”
Phys. Fluids
35
(
3
),
036110
(
2023
).
23.
X.
Ma
,
J.
Fan
,
Y.
Wu
et al, “
Study on the mechanism of shock wave and boundary layer interaction control using high-frequency pulsed arc discharge plasma
,”
Phys. Fluids
34
(
8
),
086102
(
2022
).
24.
S. B.
Verma
and
C.
Manisankar
, “
Control of incident shock-induced separation using vane-type vortex-generating devices
,”
AIAA J.
56
(
4
),
1600
1616
(
2018
).
25.
Y.
He
,
J.
Chang
,
B.
Wen
et al, “
Numerical investigation of local resistance to backpressure in hypersonic inlet with suction
,”
J. Propul. Power
32
,
1531
(
2016
).
26.
Y.
Zhang
,
H.-J.
Tan
,
J.-F.
Li
, and
N.
Yin
, “
Control of Cowl-shock/boundary-layer interactions by deformable shape-memory alloy bump
,”
AIAA J.
57
,
696
705
(
2019
).
27.
J. D.
Anderson
,
Hypersonic and High-Temperature Gas Dynamics
,
2nd ed.
(
American Institute of Aeronautics and Astronautics
,
2006
).
28.
E.
Chang
,
W.
Chan
,
T. J.
Mcintyre
et al, “
Hypersonic shock impingement on a heated flat plate at Mach 7 flight enthalpy
,”
J. Fluid Mech.
908
,
R1
(
2021
).
29.
C. L.
Dai
,
B.
Sun
,
C. F.
Zhuo
et al, “
Numerical study of high-temperature non-equilibrium effects of double-wedge in hypervelocity flow
,”
Aerosp. Sci. Technol.
124
,
107526
(
2022
).
30.
D.
Vatansevera
and
B.
Celik
, “
Unsteady shock interaction mechanisms of high enthalpy reacting flows over double wedges at Mach 7
,”
Phys. Fluids
33
,
056110
(
2021
).
31.
M. E.
Holloway
and
I. D.
Boyd
, “
Assessment of thermochemical kinetics modeling on hypersonic flow over a double cone
,”
J. Thermophys. Heat Transfer
34
(
5
),
538
547
(
2020
).
32.
J. A.
Hao
and
C. Y.
Wen
, “
Hypersonic flow over spherically blunted double cones
,”
J. Fluid Mech.
896
,
A26
(
2020
).
33.
J. L.
Brown
, “
Hypersonic shock wave impingement on turbulent boundary layers: Computational analysis and uncertainty
,”
J. Spacecr. Rockets
50
(
1
),
96
123
(
2013
).
34.
P. S.
Volpiani
, “
Numerical strategy to perform direct numerical simulations of hypersonic shock/boundary-layer interaction in chemical nonequilibrium
,”
Shock Waves
31
(
4
),
361
378
(
2021
).
35.
X.
Chen
,
Y.
Xi
,
J.
Ren
, and
S.
Fu
, “
Cross-flow vortices and their secondary instabilities in hypersonic and high-enthalpy boundary layers
,”
J. Fluid Mech.
947
,
A25
(
2022
).
36.
X.
Chen
,
L.
Wang
, and
S.
Fu
, “
Secondary instability of the hypersonic high-enthalpy boundary layers with thermal–chemical nonequilibrium effects
,”
Phys. Fluids
33
(
3
),
034132
(
2021
).
37.
D.
Passiatore
,
L.
Sciacovelli
,
P.
Cinnella
, and
G.
Pascazio
, “
Thermochemical non-equilibrium effects in turbulent hypersonic boundary layers
,”
J. Fluid Mech.
941
,
A21
(
2022
).
38.
M. H.
Yu
,
Z. Y.
Qiu
,
B. W.
Zhong
et al, “
Numerical simulation of thermochemical non-equilibrium flow-field characteristics around a hypersonic atmospheric reentry vehicle
,”
Phys. Fluids
34
(
12
),
126103
(
2022
).
39.
M. H.
Yu
,
Z. Y.
Qiu
, and
Y.
Takahashi
, “
Numerical investigation of surface catalytic effect on the plasma sheath of a hypersonic re-entry capsule
,”
Phys. Fluids
35
(
5
),
056106
(
2023
).
40.
C. L.
Dai
,
B.
Sun
,
S. B.
Zhou
et al, “
Influence of high-temperature non-equilibrium effects on Mach 12 scramjet inlet
,”
Acta Astronaut.
193
,
237
254
(
2022
).
41.
C.
Park
,
Nonequilibrium Hypersonic Aerothermodynamics
(
John Wiley & Sons
,
1990
).
42.
R.
Fiévet
and
V.
Raman
, “
Effect of vibrational nonequilibrium on isolator shock structure
,”
J. Propul. Power
34
(
5
),
1334
1344
(
2018
).
43.
C.
Park
, “
Assessment of two-temperature kinetic model for ionizing air
,”
J. Thermophys. Heat Transfer
3
,
233
244
(
1989
).
44.
L. D.
Landau
and
E.
Teller
, “
Theory of sound dispersion
,”
Phys. Z. Sowjetunion
10
,
34
(
1936
).
45.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
46.
S.
Sarkar
, “
The pressure–dilatation correlation in compressible flows
,”
Phys. Fluids A
4
,
2674
2682
(
1992
).
47.
R. N.
Gupta
,
J. M.
Yos
, and
R. A.
Thompson
, “
A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K
,”
NASA Report No. 1232
(
1990
).
48.
P. A.
Gnoffo
, “
Point-implicit relaxation strategies for viscous, hypersonic flows
,” in
Computational Methods in Hypersonic Aerodynamics
(
Springer
,
1992
), pp.
115
151
.
49.
P.
Batten
,
N.
Clarke
,
C.
Lambert
, and
D. M.
Causon
, “
On the choice of wavespeeds for the HLLC Riemann solver
,”
Siam J. Sci. Comput.
18
,
1553
1570
(
1997
).
50.
A.
Harten
, “
High resolution schemes for hyperbolic conservation laws
,”
J. Comput. Phys.
49
,
357
393
(
1983
).
51.
C. L.
Dai
,
B.
Sun
,
C. S.
Zhou
et al, “
Numerical investigation of real-gas effect of inward-turning inlet at Mach 12
,”
Aerosp. Sci. Technol.
115
,
106786
(
2021
).
52.
M. S.
Holden
,
T. P.
Wadhams
,
M. G.
MacLean
et al, “
Measurements of real gas effects on regions of laminar shock wave/boundary layer interaction in hypervelocity flows for ‘blind’ code validation studies
,” AIAA Paper No. 2013-2837,
2013
.
53.
G. T.
Coleman
and
J. L.
Stollery
, “
Heat transfer from hypersonic turbulent flow at a wedge compression corner
,”
J. Fluid Mech.
56
,
741
(
1972
).
54.
X. H.
Zhang
,
Y. Z.
Wu
, and
J. F.
Wang
, “
Turbulence models for accurate aerothermal prediction in hypersonic flows
,”
Mod. Phys. Lett. B
24
,
1345
1348
(
2010
).
55.
G.
Tu
,
X.
Deng
, and
M.
Mao
, “
Assessment of two turbulence models and some compressibility corrections for hypersonic compression corners by high-order difference schemes
,”
Chin. J. Aeronaut.
25
(
1
),
25
32
(
2012
).
56.
H.
Jiang
,
J.
Liu
,
S.
Luo
,
W.
Huang
,
J.
Wang
, and
M. K.
Liu
, “
Thermochemical non-equilibrium effects on hypersonic shock wave/turbulent boundary-layer interaction
,”
Acta Astronaut.
192
,
1
14
(
2022
).
57.
D.
Daub
,
S.
Willems
, and
A.
Gülhan
, “
Experimental results on unsteady shock-wave/boundary-layer interaction induced by an impinging shock
,”
CEAS Space J.
8
(
1
),
3
12
(
2016
).
58.
I. J.
Grossman
and
P. J. K.
Bruce
, “
Confinement effects on regular–irregular transition in shock-wave–boundary-layer interactions
,”
J. Fluid Mech.
853
,
171
204
(
2018
).
59.
W. Z.
Xie
,
S. Z.
Yang
,
C.
Zeng
et al, “
Improvement of the free-interaction theory for shock wave/turbulent boundary layer interactions
,”
Phys. Fluids
33
(
7
),
075104
(
2021
).
You do not currently have access to this content.