Concentric tube heat exchangers are vital in various industrial applications, including chemical, process, energy, mechanical, and aeronautical engineering. Advancements in heat transfer efficiency present a significant challenge in contemporary research and development. This study concerns optimizing flow and heat transfer in concentric tube heat exchangers by morphing the tube's walls. The adjoint shape optimization approach is implemented in a fully turbulent flow regime. The effect of inner tube deformation on flow physics and heat transfer is examined. The results show that morphing can lead to a 54% increase in the heat transfer rate and a 47% improvement in the overall heat transfer coefficient compared to straight concentric tube designs. Moreover, the thermal-hydraulic performance factor is calculated to account for the relative increase in heat transfer when the optimal and initial designs are operated under the same pumping power. A thermal-hydraulic performance factor of 1.2 is obtained for the new design, showing that the heat transfer enhancement caused by morphing the tube's walls outweighs the increase in pumping power. The physics of a radial flow, resulting from an adverse pressure gradient in an annular region caused by the successive inner tube deformation, significantly augments heat transfer. This study shows morphing can lead to higher thermal efficiencies, and numerical optimization can assist in achieving this goal.

1.
O.
Farhat
,
M.
Khaled
,
J.
Faraj
,
F.
Hachem
,
R.
Taher
, and
C.
Castelain
, “
A short recent review on hybrid energy systems: Critical analysis and recommendations
,”
Energy Rep.
8
,
792
802
(
2022
).
2.
A.
Herez
,
H.
El Hage
,
T.
Lemenand
,
M.
Ramadan
, and
M.
Khaled
, “
Parabolic trough photovoltaic/thermal hybrid system: Thermal modeling and parametric analysis
,”
Renewable Energy
165
,
224
236
(
2021
).
3.
A.
Amini
,
J.
Miller
, and
H.
Jouhara
, “
An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers
,”
Energy
136
,
163
172
(
2017
).
4.
K.
Faraj
,
M.
Khaled
,
J.
Faraj
,
F.
Hachem
, and
C.
Castelain
, “
Experimental study on the use of enhanced coconut oil and paraffin wax phase change material in active heating using advanced modular prototype
,”
J. Energy Storage
41
,
102815
(
2021
).
5.
J.
Faraj
,
E.
Harika
,
M.
Ramadan
,
S.
Ali
,
F.
Harambat
, and
M.
Khaled
, “
Effect of underhood architecture on aerodynamic drag—Suggestion of new concepts for fuel consumption reduction
,”
Int. J. Automot. Technol.
21
,
633
640
(
2020
).
6.
S.-I.
Na
,
M.
Kim
, and
M. S.
Kim
, “
Performance analysis of an automotive heat pump system with desiccant coated heat exchangers
,”
Appl. Therm. Eng.
213
,
118723
(
2022
).
7.
R.
Aridi
,
J.
Faraj
,
S.
Ali
,
T.
Lemenand
, and
M.
Khaled
, “
Thermoelectric power generators: State-of-the-art, heat recovery method, and challenges
,”
Electricity
2
,
359
386
(
2021
).
8.
D. S.
Patil
,
R. R.
Arakerimath
, and
P. V.
Walke
, “
Thermoelectric materials and heat exchangers for power generation—A review
,”
Renewable Sustainable Energy Rev.
95
,
1
22
(
2018
).
9.
R.
Aridi
,
J.
Faraj
,
S.
Ali
,
M.
Gad El-Rab
,
T.
Lemenand
, and
M.
Khaled
, “
Energy recovery in air conditioning systems: Comprehensive review, classifications, critical analysis, and potential recommendations
,”
Energies
14
,
5869
(
2021
).
10.
M.
Khaled
,
S.
Ali
,
H.
Jaber
,
J.
Faraj
,
R.
Murr
, and
T.
Lemenand
, “
Heating/cooling fresh air using hot/cold exhaust air of heating, ventilating, and air conditioning systems
,”
Energies
15
,
1877
(
2022
).
11.
R.
Aridi
,
J.
Faraj
,
S.
Ali
,
T.
Lemenand
et al, “
A comprehensive review on hybrid heat recovery systems: Classifications, applications, pros and cons, and new systems
,”
Renewable Sustainable Energy Rev.
167
,
112669
(
2022
).
12.
R.
Aridi
,
S.
Ali
,
T.
Lemenand
,
J.
Faraj
, and
M.
Khaled
, “
CFD analysis on the spatial effect of vortex generators in concentric tube heat exchangers—A comparative study
,”
Int. J. Thermofluids
16
,
100247
(
2022
).
13.
Millennium Ecosystem Assessment
,
Ecosystems and Human Well-Being
(
Island Press
,
Washington, DC
,
2005
), Vol.
5
.
14.
D.
Drikakis
and
T.
Dbouk
, “
The role of computational science in wind and solar energy: A critical review
,”
Energies
15
,
9609
(
2022
).
15.
P.
Naphon
and
S.
Wiriyasart
, “
Experimental study on laminar pulsating flow and heat transfer of nanofluids in micro-fins tube with magnetic fields
,”
Int. J. Heat Mass Transfer
118
,
297
303
(
2018
).
16.
M.
Sheikholeslami
and
M.
Bhatti
, “
Active method for nanofluid heat transfer enhancement by means of EHD
,”
Int. J. Heat Mass Transfer
109
,
115
122
(
2017
).
17.
H. S.
Dizaji
,
S.
Pourhedayat
,
F.
Aldawi
,
H.
Moria
,
A. E.
Anqi
, and
F.
Jarad
, “
Proposing an innovative and explicit economic criterion for all passive heat transfer enhancement techniques of heat exchangers
,”
Energy
239
,
122271
(
2022
).
18.
S.
Liu
and
M.
Sakr
, “
A comprehensive review on passive heat transfer enhancements in pipe exchangers
,”
Renewable Sustainable Energy Rev.
19
,
64
81
(
2013
).
19.
X.
Gong
,
F.
Wang
,
H.
Wang
,
J.
Tan
,
Q.
Lai
, and
H.
Han
, “
Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with pin fin arrays inserting
,”
Sol. Energy
144
,
185
202
(
2017
).
20.
C.
Zhang
,
Y.
Yan
,
K.
Shen
,
W.
Gao
,
Z.
He
,
Z.
Xue
, and
J.
Li
, “
Numerical study on combustion characteristics and heat transfer enhancement of the micro combustor embedded with y-shaped fin for micro thermo-photovoltaic system
,”
Appl. Therm. Eng.
211
,
118427
(
2022
).
21.
T.
Dbouk
,
C.
Habchi
,
J.-L.
Harion
, and
D.
Drikakis
, “
Heat transfer and mixing enhancement by Poiseuille-Taylor-Couette flow between two rotating elliptically-deformed annular tubes
,”
Int. J. Heat Fluid Flow
96
,
109011
(
2022
).
22.
C.
Luo
and
K.
Song
, “
Thermal performance enhancement of a double-tube heat exchanger with novel twisted annulus formed by counter-twisted oval tubes
,”
Int. J. Therm. Sci.
164
,
106892
(
2021
).
23.
S.
Ali
,
Z. A.
Shami
,
A.
Badran
, and
C.
Habchi
, “
Heat transfer enhancement using second mode self-oscillating structures
,”
Int. J. Numer. Methods Heat Fluid Flow
30
,
3827
3842
(
2019
).
24.
S.
Ali
,
T.
Dbouk
,
G.
Wang
,
D.
Wang
, and
D.
Drikakis
, “
Advancing thermal performance through vortex generators morphing
,”
Sci. Rep.
13
,
368
(
2023
).
25.
S.
Ali
,
C.
Habchi
,
T.
Lemenand
, and
J.-L.
Harion
, “
Towards self-sustained oscillations of multiple flexible vortex generators
,”
Fluid Dyn. Res.
51
,
025507
(
2019
).
26.
B.
Li
,
Z.
Li
,
P.
Yang
,
J.
Xu
, and
H.
Wang
, “
Modeling and optimization of the thermal-hydraulic performance of direct contact heat exchanger using quasi-opposite Jaya algorithm
,”
Int. J. Therm. Sci.
173
,
107421
(
2022
).
27.
A. A.
Serageldin
,
A.
Radwan
,
T.
Katsura
,
Y.
Sakata
,
S.
Nagasaka
, and
K.
Nagano
, “
Parametric analysis, response surface, sensitivity analysis, and optimization of a novel spiral-double ground heat exchanger
,”
Energy Convers. Manage.
240
,
114251
(
2021
).
28.
T.
Dagdevir
, “
Multi-objective optimization of geometrical parameters of dimples on a dimpled heat exchanger tube by Taguchi based grey relation analysis and response surface method
,”
Int. J. Therm. Sci.
173
,
107365
(
2022
).
29.
S. M.
Kirkar
,
A.
Gönül
,
A.
Celen
, and
A. S.
Dalkilic
, “
Multi-objective optimization of single-phase flow heat transfer characteristics in corrugated tubes
,”
Int. J. Therm. Sci.
186
,
108119
(
2023
).
30.
V.
Patel
and
R.
Rao
, “
Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique
,”
Appl. Therm. Eng.
30
,
1417
1425
(
2010
).
31.
M.
Bahiraei
,
R.
Khosravi
, and
S.
Heshmatian
, “
Assessment and optimization of hydrothermal characteristics for a non-Newtonian nanofluid flow within miniaturized concentric-tube heat exchanger considering designer's viewpoint
,”
Appl. Therm. Eng.
123
,
266
276
(
2017
).
32.
P.
Wu
,
P.
Wang
, and
H.
Gao
, “
Dynamic mode decomposition analysis of the common research model with adjoint-based gradient optimization
,”
Phys. Fluids
33
,
035123
(
2021
).
33.
Y.
Shi
,
C. A.
Mader
,
S.
He
,
G. L.
Halila
, and
J. R.
Martins
, “
Natural laminar-flow airfoil optimization design using a discrete adjoint approach
,”
AIAA J.
58
,
4702
4722
(
2020
).
34.
D.
Solano
,
D.
Sarojini
,
D.
Rajaram
, and
D. N.
Mavris
, “
Adjoint-based analysis and optimization of beam-like structures subjected to dynamic loads
,”
Struct. Multidiscip. Optim.
65
,
52
(
2022
).
35.
S.
Kambampati
,
H.
Chung
, and
H. A.
Kim
, “
A discrete adjoint based level set topology optimization method for stress constraints
,”
Comput. Methods Appl. Mech. Eng.
377
,
113563
(
2021
).
36.
E.
Sayed
,
M. H.
Bakr
,
B.
Bilgin
, and
A.
Emadi
, “
Gradient-based design optimization of a switched reluctance motor for an HVAC application,” in
IEEE Transportation Electrification Conference & Expo (ITEC)
(
IEEE
,
2020
), pp.
1031
1037
.
37.
D.
Joshi
,
S.
Dash
,
H.
Jatana
,
R.
Bhattacharjee
, and
G.
Trivedi
, “
Analog circuit optimization using adjoint network based sensitivity analysis
,”
AEU-Int. J. Electron. Commun.
82
,
221
225
(
2017
).
38.
F.
Delay
,
H.
Badri
,
M.
Fahs
, and
P.
Ackerer
, “
A comparison of discrete versus continuous adjoint states to invert groundwater flow in heterogeneous dual porosity systems
,”
Adv. Water Resour.
110
,
1
18
(
2017
).
39.
H.
Fahs
,
M.
Hayek
,
M.
Fahs
, and
A.
Younes
, “
An efficient numerical model for hydrodynamic parameterization in 2D fractured dual-porosity media
,”
Adv. Water Resour.
63
,
179
193
(
2014
).
40.
D.
Drikakis
,
M.
Hahn
,
A.
Mosedale
, and
B.
Thornber
, “
Large eddy simulation using high-resolution and high-order methods
,”
Philos. Trans. R. Soc. A
367
,
2985
2997
(
2009
).
41.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
42.
R.
Warming
and
R. M.
Beam
, “
Upwind second-order difference schemes and applications in aerodynamic flows
,”
AIAA J.
14
,
1241
1249
(
1976
).
43.
I. B.
Celik
,
U.
Ghia
,
P. J.
Roache
, and
C. J.
Freitas
, “
Procedure for estimation and reporting of uncertainty due to discretization in CFD applications
,”
J. Fluids Eng.-Trans. ASME
130
,
078001
(
2008
).
44.
B.
Pethukov
and
V.
Kirillov
, “
The problem of heat exchange in the turbulent flow of liquids in tubes
,”
Teploenergetika
4
,
63
68
(
1958
).
45.
F. M.
White
,
Fluid Mechanics
,
7th ed
. (
McGraw-Hill
,
New York
,
2011
).
46.
ANSYS Inc
.,
ANSYS FLUENT
(
ANSYS Inc
.,
2022
).
47.
H.
Karkaba
,
T.
Dbouk
,
C.
Habchi
,
S.
Russeil
,
T.
Lemenand
, and
D.
Bougeard
, “
Multi objective optimization of vortex generators for heat transfer enhancement using large design space exploration
,”
Chem. Eng. Process.-Process Intensif.
154
,
107982
(
2020
).
48.
B.
Fleischli
,
L.
Mangani
,
A.
Del Rio
, and
E.
Casartelli
, “
A discrete adjoint method for pressure-based algorithms
,”
Comput. Fluids
227
,
105037
(
2021
).
49.
R.
Roth
and
S.
Ulbrich
, “
A discrete adjoint approach for the optimization of unsteady turbulent flows
,”
Flow, Turbul. Combust.
90
,
763
783
(
2013
).
50.
W.-Q.
Tao
,
Z.-Y.
Guo
, and
B.-X.
Wang
, “
Field synergy principle for enhancing convective heat transfer—Its extension and numerical verifications
,”
Int. J. Heat Mass Transfer
45
,
3849
3856
(
2002
).
51.
R.
Webb
and
E.
Eckert
, “
Application of rough surfaces to heat exchanger design
,”
Int. J. Heat Mass Transfer
15
,
1647
1658
(
1972
).
You do not currently have access to this content.