The primary aim of this study is to examine the effect of squeezing hybrid nanofluids copper and magnetite with water flow across a horizontal surface under the impact of magnetic and radiative effects, which has extensive applications in the field of biomedical engineering and nanotechnology. Additionally, a microcantilever sensor is placed between the horizontal surfaces to surveil the flow behaviors. The equations pertaining to momentum and energy are reconstructed into a set of ordinary differential equations (ODEs). These ODEs are subsequently solved through a numerical approach, wherein the bvp4c solver from MATLAB is utilized. This solver employs a collocation technique for the numerical solution. As a result, the solutions acquired for velocity and temperature are graphically displayed for different parameters, including volume fraction of nanoparticles, squeezing flow index parameter (b), magnetic parameter ( M ), permeable velocity parameter ( f 0 ), radiation parameter R, and Prandtl number ( P r ). It has been observed that increasing the magnetic effect as well as the volume fraction of nanoparticles strengthens the flow effect. In contrast, increasing the squeezing and permeable velocity parameter impedes the flow. When there is an increase in a permeable velocity parameter, the temperature shoots up, and the cooling effect is spotted in the temperature profile, when the Prandtl number and magnetic and squeezing parameters are raised. This investigation upholds the significance of drag reduction, flow instabilities, fluid structure interactions, and heat transfer effectiveness by virtue of wall shear stress, squeezing flow index parameter, various hybrid nanofluids, and Nusselt number, respectively. A considerable comparative study has been made for the validation of current results.

1.
S. U. S.
Choi
and
A. J.
Eastman
, “
Enhancing thermal conductivity of fluids with nanoparticles
,”
Report No. ANL/MSD/CP-84938; CONF-951135-29
[
Argonne National Lab. (ANL)
,
Argonne, IL
,
1995
].
2.
J.
Sarkar
,
P.
Ghosh
, and
A.
Adil
, “
A review on hybrid nanofluids: Recent research, development and applications
,”
Renewable Sustainable Energy Rev.
43
,
164
177
(
2015
).
3.
N. A. C.
Sidik
,
I. M.
Adamu
,
M. M.
Jamil
,
G. H. R.
Kefayati
,
R.
Mamat
, and
G.
Najafi
, “
Recent progress on hybrid nanofluids in heat transfer applications: A comprehensive review
,”
Int. Commun. Heat Mass Transfer
78
,
68
79
(
2016
).
4.
L. S.
Sundar
,
K. V.
Sharma
,
M. K.
Singh
, and
A. C. M.
Sousa
, “
Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor—A review
,”
Renewable Sustainable Energy Rev.
68
,
185
198
(
2017
).
5.
F.
Jamil
and
H. M.
Ali
, “
Applications of hybrid nanofluids in different fields
,” in
Hybrid Nanofluids for Convection Heat Transfer
(
Academic Press
,
2020
), pp.
215
254
.
6.
M. H.
Ahmadi
,
M.
Ghazvini
,
M.
Sadeghzadeh
,
M. A.
Nazari
, and
M.
Ghalandari
, “
Utilization of hybrid nanofluids in solar energy applications: A review
,”
Nano-Struct. Nano-Objects
20
,
100386
(
2019
).
7.
L.
Yang
,
W.
Ji
,
M.
Mao
, and
J. N.
Huang
, “
An updated review on the properties, fabrication and application of hybrid-nanofluids along with their environmental effects
,”
J. Cleaner Prod.
257
,
120408
(
2020
).
8.
N. S.
Khashi'ie
,
I.
Waini
,
N. M.
Arifin
, and
I.
Pop
, “
Unsteady squeezing flow of Cu-Al2O3/water hybrid nanofluid in a horizontal channel with magnetic field
,”
Sci. Rep.
11
(
1
),
14128
(
2021
).
9.
M.
Dhivya
,
P.
Loganathan
, and
K.
Vajravelu
, “
Chemically reacting viscous fluid flow on a permeable cylinder susceptible to oscillations
,”
Int. Commun. Heat Mass Transfer
126
,
105477
(
2021
).
10.
R.
Rajakumari
and
M.
Dhivya
, “
Influence of radiative magnetic field on a convective flow of a chemically reactive hybrid nanofluid over a vertical plate
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
105
(
1
),
90
106
(
2023
).
11.
H.
Upreti
,
A. K.
Pandey
, and
M.
Kumar
, “
Unsteady squeezing flow of magnetic hybrid nanofluids within parallel plates and entropy generation
,”
Heat Transfer
50
(
1
),
105
125
(
2021
).
12.
P.
Loganathan
and
M.
Dhivya
, “
Time-dependent nonlinear finite difference analysis of buoyancy-driven convective flow over an oscillating porous moving vertical cylinder
,”
Proc. Nat. Acad. Sci., India, Sect. A
91
,
89
96
(
2021
).
13.
P.
Loganathan
and
M.
Dhivya
, “
Three‐dimensional visualization of an electrically conducting and viscous dissipative fluid flow over a moving permeable vertical
,”
Heat Transfer
48
(
2
),
502
519
(
2019
).
14.
A.
Shaheen
,
M.
Imran
,
H.
Waqas
,
M.
Raza
, and
S.
Rashid
, “
Thermal transport analysis of squeezing hybrid nanofluid flow between two parallel plates
,”
Adv. Mech. Eng.
15
(
1
) (
2023
).
15.
S.
Murtaza
,
P.
Kumam
,
Z.
Ahmad
,
M.
Ramzan
,
I.
Ali
, and
A.
Saeed
, “
Computational simulation of unsteady squeezing hybrid nanofluid flow through a horizontal channel comprised of metallic nanoparticles
,”
J. Nanofluids
12
(
5
),
1327
1334
(
2023
).
16.
M. S.
Khan
,
S.
Mei
,
Shabnam
,
N.
Ali Shah
,
J. D.
Chung
,
A.
Khan
, and
S. A.
Shah
, “
Steady squeezing flow of magnetohydrodynamics hybrid nanofluid flow comprising carbon nanotube-ferrous oxide/water with suction/injection effect
,”
Nanomaterials
12
(
4
),
660
(
2022
).
17.
L. A.
Lund
,
Z.
Omar
,
J.
Raza
, and
I.
Khan
, “
Magnetohydrodynamic flow of Cu–Fe3O4/H2O hybrid nanofluid with effect of viscous dissipation: Dual similarity solutions
,”
J. Therm. Anal. Calorim.
143
,
915
927
(
2021
).
18.
W.
Li
,
Z.
Li
,
W.
Han
,
Y.
Li
,
S.
Yan
,
Q.
Zhao
, and
F.
Chen
, “
Measured viscosity characteristics of Fe3O4 ferrofluid in magnetic and thermal fields
,”
Phys. Fluids
35
(
1
),
012002
(
2023
).
19.
S. K.
Vashist
and
H.
Holthöfer
, “
Microcantilevers for sensing applications
,”
Meas. Control
43
(
3
),
84
88
(
2010
).
20.
P. G.
Datskos
,
P. I.
Oden
,
T.
Thundat
,
E. A.
Wachter
,
R. J.
Warmack
, and
R. S.
Hunter
, “
Micromechanical temperature sensor
,”
Appl. Phys. Lett.
69
,
2986
2988
(
1996
).
21.
A. M.
Jasim
, “
Study effect of MHD on squeezing flow of water-based Casson nanofluid in a porous medium between two parallel plates
,”
AIP Conf. Proc.
2457
(
1
),
020014
(
2023
).
22.
P. S.
Gupta
and
A. S.
Gupta
, “
Squeezing flow between parallel plates
,”
Wear
45
(
2
),
177
185
(
1977
).
23.
A. R.
Khaled
and
K.
Vafai
, “
Hydromagnetic squeezed flow and heat transfer over a sensor surface
,”
Int. J. Eng. Sci.
42
(
5–6
),
509
519
(
2004
).
24.
M.
Mahmood
,
S.
Asghar
, and
M. A.
Hossain
, “
Squeezed flow and heat transfer over a porous surface for viscous fluid
,”
Heat Mass Transfer
44
,
165
173
(
2007
).
25.
R. U.
Haq
,
S.
Nadeem
,
Z. H.
Khan
, and
N. F. M.
Noor
, “
MHD squeezed flow of water functionalized metallic nanoparticles over a sensor surface
,”
Physica E
73
,
45
53
(
2015
).
26.
I.
Waini
,
A.
Ishak
, and
I.
Pop
, “
Squeezed hybrid nanofluid flow over a permeable sensor surface
,”
Mathematics
8
(
6
),
898
(
2020
).
27.
R. K.
Muhammed
,
H.
Basha
,
G. J.
Reddy
,
U.
Shankar
, and
O. A.
Bég
, “
Influence of variable thermal conductivity and dissipation on magnetic Carreau fluid flow along a micro-cantilever sensor in a squeezing regime
,”
Waves Random Complex Media
,
1
30
(
2022
).
28.
N. A. M.
Noor
and
S.
Shafie
, “
Magnetohydrodynamics squeeze flow of sodium alginate-based Jeffrey hybrid nanofluid with heat sink or source
,”
Case Stud. Therm. Eng.
49
,
103303
(
2023
).
29.
N. S.
Khashi'ie
,
N. M.
Arifin
, and
I.
Pop
, “
Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating
,”
Alexandria Eng. J.
61
(
3
),
1938
1945
(
2022
).
30.
N.
Abderrahaman-Elena
and
R.
García-Mayoral
, “
Analysis of anisotropically permeable surfaces for turbulent drag reduction
,”
Phys. Rev. Fluids
2
(
11
),
114609
(
2017
).
31.
E. M.
Sparrow
,
E. R. G.
Eckert
, and
W. J.
Minkowycz
, “
Transpiration cooling in a magneto-hydrodynamic stagnation-point flow
,”
Appl. Sci. Res., Sect. A
11
,
125
147
(
1963
).
32.
K. A.
Yih
, “
The effect of uniform suction/blowing on heat transfer of magnetohydrodynamic Hiemenz flow through porous media
,”
Acta Mech.
130
(
3–4
),
147
158
(
1998
).
You do not currently have access to this content.