This article investigates the fluid dynamics and heat transfer properties in a trapezoidal enclosure containing a heated cylindrical object. It involves the interaction of multiple physical processes such as the magnetic field, thermal radiation, porous materials, and aqueous copper oxide nanoparticles. The governing partial differential equations are analyzed numerically through the continuous Galerkin finite element algorithm. The analysis takes into account various physical parameter factors, including the Richardson number ( 0 5 ), the Hartmann number ( 5 40 ), the Darcy number ( 0.001 0.1 ), thermal radiation parameter ( 0.5 2 ), and nanoparticle volume concentration ( 0.01 0.1 ). The physical mechanism of thermal and mass transfer in the enclosure caused by various factors is fully explored. In addition, the multiple expression programming (MEP) technique is implemented to report a comparative analysis of flow profiles and thermal distribution. The findings demonstrated that at low Ri, the primary flow within the cavity is driven by the shear friction generated by the moving walls. The growing importance of radiative heat transfer reduces the effectiveness of convective heat transfer, resulting in a decline in the average Nusselt number with R. The heat transfer rate rises up to 27.7% as ϕ augments; however, its value declines by 9.37% against Ha. The expected results obtained by the MEP approach are very consistent with the numerical ones. There is no doubt that the new MEP concept provides a valuable tool for researchers to predict the heat transfer behavior of any data set in cavities of different shapes. It is expected to provide new idea for the development of efficient cooling systems and the improvement of energy efficiency in various engineering applications.

1.
J. C.
Maxwell
, in
A Treatise on Electricity and Magnetism
(
Clarendon Press
,
Oxford
,
1873
), Vol.
1
.
2.
S. U.
Choi
and
J. A.
Eastman
, “
Enhancing thermal conductivity of fluids with nanoparticles
,”
Technical Report No. 84938
(
Argonne National Lab.(ANL)
,
Argonne
,
1995
).
3.
A. J.
Chamkha
,
M.
Molana
,
A.
Rahnama
, and
F.
Ghadami
, “
On the nanofluids applications in microchannels: A comprehensive review
,”
Powder Technol.
332
,
287
322
(
2018
).
4.
C. S.
Balla
,
N.
Kishan
,
R. S.
Gorla
, and
B.
Gireesha
, “
MHD boundary layer flow and heat transfer in an inclined porous square cavity filled with nanofluids
,”
Ain Shams Eng. J.
8
,
237
254
(
2017
).
5.
F.
Selimefendigil
, “
Natural convection in a trapezoidal cavity with an inner conductive object of different shapes and filled with nanofluids of different nanoparticle shapes
,”
Iran. J. Sci. Technol., Trans. Mech. Eng.
42
,
169
184
(
2018
).
6.
J.
Koo
and
C.
Kleinstreuer
, “
A new thermal conductivity model for nanofluids
,”
J. Nanopart. Res.
6
,
577
588
(
2004
).
7.
A. K.
Hilo
,
A. A.
Iborra
,
M. T. H.
Sultan
,
M. F. A.
Hamid
et al, “
Experimental study of nanofluids flow and heat transfer over a backward-facing step channel
,”
Powder Technol.
372
,
497
505
(
2020
).
8.
E. C.
Okonkwo
,
I.
Wole-Osho
,
I. W.
Almanassra
,
Y. M.
Abdullatif
, and
T.
Al-Ansari
, “
An updated review of nanofluids in various heat transfer devices
,”
J. Therm. Anal. Calorim.
145
,
2817
2872
(
2021
).
9.
M.
Zafar
,
H.
Sakidin
,
M.
Sheremet
,
I.
Dzulkarnain
,
R. M.
Nazar
,
A.
Hussain
,
Z.
Said
,
F.
Afzal
,
A.
Al-Yaari
,
M. S.
Khan
et al, “
The impact of cavities in different thermal applications of nanofluids: A review
,”
Nanomaterials
13
,
1131
(
2023
).
10.
A.
Yasin
,
N.
Ullah
,
S.
Nadeem
, and
S.
Saleem
, “
Finite element simulation for free convective flow in an adiabatic enclosure: Study of Lorentz forces and partially thermal walls
,”
Case Stud. Therm. Eng.
25
,
100981
(
2021
).
11.
J.
Ahmed
,
M.
Khan
, and
L.
Ahmad
, “
Stagnation point flow of Maxwell nanofluid over a permeable rotating disk with heat source/sink
,”
J. Mol. Liq.
287
,
110853
(
2019
).
12.
M.
Khan
,
M.
Sarfraz
,
J.
Ahmed
,
L.
Ahmad
, and
C.
Fetecau
, “
Non-axisymmetric Homann stagnation-point flow of Walter's B nanofluid over a cylindrical disk
,”
Appl. Math. Mech.
41
,
725
740
(
2020
).
13.
J.
Ahmed
,
M.
Khan
, and
L.
Ahmad
, “
Radiative heat flux effect in flow of Maxwell nanofluid over a spiraling disk with chemically reaction
,”
Physica A
551
,
123948
(
2020
).
14.
A.
Hafeez
,
M.
Khan
, and
J.
Ahmed
, “
Stagnation point flow of radiative Oldroyd-B nanofluid over a rotating disk
,”
Comput. Methods Programs Biomed.
191
,
105342
(
2020
).
15.
J.
Ahmed
,
M.
Khan
, and
L.
Ahmad
, “
Joule heating effects in thermally radiative swirling flow of Maxwell fluid over a porous rotating disk
,”
Int. J. Thermophys.
40
,
106
(
2019
).
16.
Z. A.
Raizah
,
A. M.
Aly
, and
S. E.
Ahmed
, “
Natural convection flow of a nanofluid-filled v-shaped cavity saturated with a heterogeneous porous medium: Incompressible smoothed particle hydrodynamics analysis
,”
Ain Shams Eng. J.
12
,
2033
2046
(
2021
).
17.
P. S.
Reddy
and
P.
Sreedevi
, “
Buongiorno's model nanofluid natural convection inside a square cavity with thermal radiation
,”
Chin. J. Phys.
72
,
327
344
(
2021
).
18.
H.
Babazadeh
,
Z.
Shah
,
I.
Ullah
,
P.
Kumam
, and
A.
Shafee
, “
Analysis of hybrid nanofluid behavior within a porous cavity including Lorentz forces and radiation impacts
,”
J. Therm. Anal. Calorim.
143
,
1129
1137
(
2021
).
19.
N. K.
Manna
,
M. K.
Mondal
, and
N.
Biswas
, “
A novel multi-banding application of magnetic field to convective transport system filled with porous medium and hybrid nanofluid
,”
Phys. Scr.
96
,
065001
(
2021
).
20.
A. U.
Khan
,
N.
Ullah
,
A.
Al-Zubaidi
, and
S.
Nadeem
, “
Finite element analysis for CuO/water nanofluid in a partially adiabatic enclosure: Inclined Lorentz forces and porous medium resistance
,”
Alexandria Eng. J.
61
,
6477
6488
(
2022
).
21.
P.
Sreedevi
and
P. S.
Reddy
, “
Effect of magnetic field and thermal radiation on natural convection in a square cavity filled with TiO2 nanoparticles using Tiwari-Das nanofluid model
,”
Alexandria Eng. J.
61
,
1529
1541
(
2022
).
22.
U.
Rashid
,
D.
Lu
, and
Q.
Iqbal
, “
Nanoparticles impacts on natural convection nanofluid flow and heat transfer inside a square cavity with fixed a circular obstacle
,”
Case Stud. Therm. Eng.
44
,
102829
(
2023
).
23.
H.
Yasmin
,
S. O.
Giwa
,
S.
Noor
, and
H. Ş.
Aybar
, “
Reproduction of nanofluid synthesis, thermal properties and experiments in engineering: A research paradigm shift
,”
Energies
16
,
1145
(
2023
).
24.
G.
Abdelmassih
,
S.
Varela
,
A.
Vernet
, and
J.
Pallares
, “
DPIV experimental study of mixed convection in an open cavity
,” in
PIV13; 10th International Symposium on Particle Image Velocimetry
, Delft, The Netherlands, July 1–3, 2013 (
Delft University of Technology, Faculty of Mechanical, Maritime
,
2013
).
25.
M. A.
Sadiq
,
A. I.
Alsabery
, and
I.
Hashim
, “
MHD mixed convection in a lid-driven cavity with a bottom trapezoidal body: Two-phase nanofluid model
,”
Energies
11
,
2943
(
2018
).
26.
O.
Prakash
and
S.
Singh
, “
Experimental and numerical study of mixed convection with surface radiation heat transfer in an air-filled ventilated cavity
,”
Int. J. Therm. Sci.
171
,
107169
(
2022
).
27.
I.
Ataei-Dadavi
,
M.
Chakkingal
,
S.
Kenjeres
,
C. R.
Kleijn
, and
M. J.
Tummers
, “
Experiments on mixed convection in a vented differentially side-heated cavity filled with a coarse porous medium
,”
Int. J. Heat Mass Transfer
149
,
119238
(
2020
).
28.
T.
Schaub
,
F.
Arbeiter
,
W.
Hering
, and
R.
Stieglitz
, “
Forced and mixed convection experiments in a confined vertical backward facing step at low-Prandtl number
,”
Exp. Fluids
63
,
19
(
2022
).
29.
E. D.
Aboud
,
H. K.
Rashid
,
H. M.
Jassim
,
S. Y.
Ahmed
,
S. O. W.
Khafaji
,
H. K.
Hamzah
, and
F. H.
Ali
, “
MHD effect on mixed convection of annulus circular enclosure filled with non-Newtonian nanofluid
,”
Heliyon
6
,
e03773
(
2020
).
30.
A.
Raji
and
M.
Hasnaoui
, “
Combined mixed convection and radiation in ventilated cavities
,”
Eng. Comput.
18
,
922
949
(
2001
).
31.
A.
Arefmanesh
,
A.
Aghaei
, and
H.
Ehteram
, “
Mixed convection heat transfer in a CuO–water filled trapezoidal enclosure, effects of various constant and variable properties of the nanofluid
,”
Appl. Math. Modell.
40
,
815
831
(
2016
).
32.
O.
Murat
,
B.
Rosic
,
K.
Tanimoto
, and
R.
Egami
, “
Experimental and numerical investigations of mixed convection in turbine cavities for more flexible operations
,”
J. Global Power Propul. Soc.
6
,
106
123
(
2022
).
33.
M.
Hirpho
and
W.
Ibrahim
, “
Modeling and simulation of hybrid Casson nanofluid mixed convection in a partly heated trapezoidal enclosure
,”
Int. J. Thermofluids
15
,
100166
(
2022
).
34.
D. T.
Yaseen
,
S. M.
Salih
, and
M. A.
Ismael
, “
Effect of the lid-driven on mixed convection in an open flexible wall cavity with a partially heated bottom wall
,”
Int. J. Therm. Sci.
188
,
108213
(
2023
).
35.
S.
Gupta
and
C.
Sasmal
, “
Effect of cavity aspect ratio on mixed convective heat transfer phenomenon inside a lid-driven cavity due to elastic turbulence
,”
Phys. Fluids
35
,
033114
(
2023
).
36.
I. V.
Miroshnichenko
,
M. A.
Sheremet
,
H. F.
Oztop
, and
K.
Al-Salem
, “
MHD natural convection in a partially open trapezoidal cavity filled with a nanofluid
,”
Int. J. Mech. Sci.
119
,
294
302
(
2016
).
37.
A. I.
Alsabery
,
M. A.
Ismael
,
A. J.
Chamkha
, and
I.
Hashim
, “
Mixed convection of Al2O3-water nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno's two-phase model
,”
Int. J. Heat Mass Transfer
119
,
939
961
(
2018
).
38.
A.
Rashad
,
M.
Mansour
,
T.
Armaghani
, and
A.
Chamkha
, “
MHD mixed convection and entropy generation of nanofluid in a lid-driven u-shaped cavity with internal heat and partial slip
,”
Phys. Fluids
31
,
042006
(
2019
).
39.
I.
Ali
,
A. I.
Alsabery
,
N.
Bakar
, and
R.
Roslan
, “
Mixed convection in a double lid-driven cavity filled with hybrid nanofluid by using finite volume method
,”
Symmetry
12
,
1977
(
2020
).
40.
M.
Mansour
and
M.
Bakier
, “
Magnetohydrodynamic mixed convection of TiO2–Cu/water between the double lid-driven cavity and a central heat source surrounding by a wavy tilted domain of porous medium under local thermal non-equilibrium
,”
SN Appl. Sci.
5
,
51
(
2023
).
41.
N.
Noor
,
R. U.
Haq
,
H.
Wong
,
A. K.
Alzahrani
, and
M. Z.
Ullah
, “
Flow and heat transfer due to partially heated moving lid in a trapezoidal cavity with different constraints at inner circular obstacle
,”
Int. Commun. Heat Mass Transfer
135
,
106111
(
2022
).
42.
B.
Joshi
,
A.
Sengupta
, and
P.
Sundaram
, “
Exploring role of aspect ratio for compressible flow in a rectangular lid-driven cavity with a vertical temperature gradient
,”
Phys. Fluids
35
,
066135
(
2023
).
43.
R.
Perera
,
A.
Arteaga
, and
A.
De Diego
, “
Artificial intelligence techniques for prediction of the capacity of RC beams strengthened in shear with external FRP reinforcement
,”
Compos. Struct.
92
,
1169
1175
(
2010
).
44.
I.
Mansouri
,
A.
Gholampour
,
O.
Kisi
, and
T.
Ozbakkaloglu
, “
Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques
,”
Neural Comput. Appl.
29
,
873
888
(
2018
).
45.
F. E.
Jalal
,
M.
Iqbal
,
M.
Ali Khan
,
B. A.
Salami
,
S.
Ullah
,
H.
Khan
,
M.
Nabil
et al, “
Indirect estimation of swelling pressure of expansive soil: GEP versus MEP modelling
,”
Adv. Mater. Sci. Eng.
2023
,
1827117
.
46.
H. W.
Cho
,
Y. G.
Park
,
Y. M.
Seo
, and
M. Y.
Ha
, “
Prediction of the heat transfer performance of mixed convection in a lid-driven enclosure with an elliptical cylinder using an artificial neural network
,”
Numer. Heat Transfer, Part A: Appl.
78
,
29
47
(
2020
).
47.
D. K.
Mandal
,
N.
Biswas
,
N. K.
Manna
,
D. K.
Gayen
,
R. S. R.
Gorla
, and
A. J.
Chamkha
, “
Thermo-fluidic transport process in a novel m-shaped cavity packed with non-Darcian porous medium and hybrid nanofluid: Application of artificial neural network (ANN)
,”
Phys. Fluids
34
,
033608
(
2022
).
48.
C. S. N.
Azwadi
,
M.
Zeinali
,
A.
Safdari
, and
A.
Kazemi
, “
Adaptive-network-based fuzzy inference system analysis to predict the temperature and flow fields in a lid-driven cavity
,”
Numer. Heat Transfer, Part A: Appl.
63
,
906
920
(
2013
).
49.
J.
Reddy
, “
On penalty function methods in the finite-element analysis of flow problems
,”
Int. J. Numer. Methods Fluids
2
,
151
171
(
1982
).
50.
B.
Dyne
and
J.
Heinrich
, “
Physically correct penalty-like formulations for accurate pressure calculation in finite element algorithms of the Navier–Stokes equations
,”
Int. J. Numer. Methods Eng.
36
,
3883
3902
(
1993
).
51.
A.
Al-Amiri
,
K.
Khanafer
,
J.
Bull
, and
I.
Pop
, “
Effect of sinusoidal wavy bottom surface on mixed convection heat transfer in a lid-driven cavity
,”
Int. J. Heat Mass Transfer
50
,
1771
1780
(
2007
).
52.
M.
Aghighi
,
A.
Ammar
,
H.
Masoumi
, and
A.
Lanjabi
, “
Rayleigh–Bénard convection of a viscoplastic liquid in a trapezoidal enclosure
,”
Int. J. Mech. Sci.
180
,
105630
(
2020
).
53.
R.
Iwatsu
,
K.
Ishii
,
T.
Kawamura
,
K.
Kuwahara
, and
J. M.
Hyun
, “
Numerical simulation of three-dimensional flow structure in a driven cavity
,”
Fluid Dyn. Res.
5
,
173
(
1989
).
54.
R.
Iwatsu
,
J. M.
Hyun
, and
K.
Kuwahara
, “
Analyses of three-dimensional flow calculations in a driven cavity
,”
Fluid Dyn. Res.
6
,
91
(
1990
).
55.
A.
Fallahpour
,
E. U.
Olugu
, and
S. N.
Musa
, “
A hybrid model for supplier selection: Integration of AHP and multi expression programming (MEP)
,”
Neural Comput. Appl.
28
,
499
504
(
2017
).
56.
M.-T.
Puth
,
M.
Neuhäuser
, and
G. D.
Ruxton
, “
Effective use of Pearson's product–moment correlation coefficient
,”
Anim. Behav.
93
,
183
189
(
2014
).
57.
J.
Gravier
,
V.
Vignal
,
S.
Bissey-Breton
, and
J.
Farre
, “
The use of linear regression methods and Pearson's correlation matrix to identify mechanical–physical–chemical parameters controlling the micro-electrochemical behaviour of machined copper
,”
Corros. Sci.
50
,
2885
2894
(
2008
).
You do not currently have access to this content.