The value of this work is in its macromolecular explanations of both Cox–Merz rules, thus of when to expect them to work. For polymeric liquids and their solutions, the measured values of the steady shear viscosity and the magnitude of the complex viscosity often equate, within experimental error, when compared at common shear rate (in units of t 1) and angular frequency (in units of rad t 1). Called the first Cox–Merz rule, this remarkable empiricism, with one exception, has defied most macromolecular explanations. This one exception is the suspension of multi-bead rods and its special case of rigid dumbbells. The second Cox–Merz rule equates approximately the slope of the first derivative of steady shear viscosity with respect to shear rate with the real part of the complex viscosity when compared at common shear rate (in units of t 1) and angular frequency (in units of rad t 1). In this paper, we explain both Cox–Merz rules for all axisymmetric macromolecules, be they prolate or oblate, of almost any lopsidedness. Furthermore, through the lens of general rigid bead-rod theory, we define under what conditions these rules do not apply. Specifically, the first Cox–Merz rule fails when the macromolecules are too oblate.

1.
R. B.
Bird
,
H. R.
Warner
, Jr.
, and
D. C.
Evans
, “
Kinetic Theory and rheology of dumbbell suspensions with Brownian motion
,”
Adv. Polym. Sci.
8
,
1
90
(
1971
).
2.
W. P.
Cox
and
E. H.
Merz
, “
Correlation of dynamic and steady flow viscosities
,”
J. Polym. Sci.
28
,
619
622
(
1958
).
3.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
,
1st ed.
(
John Wiley & Sons, Inc
.,
New York
,
1977
), Vol.
1
.
4.
D. G.
Baird
and
D. I.
Collias
,
Polymer Processing: Principles and Design
(
Wiley
,
New York
,
1998
).
5.
D. G.
Baird
and
D. I.
Collias
,
Polymer Processing: Principles and Design
,
2nd ed.
(
Wiley
,
New York
,
2014
).
6.
S.
Middleman
,
Fundamentals of Polymer Processing
(
McGraw-Hill
,
New York
,
1977
).
7.
J. D.
Ferry
,
Viscoelastic Properties of Polymers
,
2nd ed.
(
Wiley
,
New York
,
1980
).
8.
P. J.
Carreau
,
D. C. R.
De Kee
, and
R. P.
Chhabra
,
Rheology of Polymeric Systems: Principles and Applications
(
Hanser
,
Munich
,
1997
).
9.
J.-F.
Agassant
,
P.
Avenas
,
P. J.
Carreau
,
B.
Vergnes
, and
M.
Vincent
,
Polymer Processing: Principles and Modelling
,
2nd ed.
(
Hanser
,
Munich
,
2017
).
10.
G. D. J.
Phillies
,
Phenomenology of Polymer Solution Dynamics
(
Cambridge University Press
,
Cambridge
,
2011
).
11.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
,
2nd ed.
(
John Wiley & Sons, Inc
.,
New York
,
1987
), Vol.
1
.
12.
J. M.
Dealy
,
Rheometers for Molten Plastics: A Practical Guide to Testing and Property Measurements
(
Van Nostrand Reinhold
,
New York
,
1982
).
13.
J. M.
Dealy
and
P. C.
Saucier
,
Rheology in Plastics Quality Control
(
Hanser
,
Munich
,
2000
).
14.
H. A.
Barnes
,
J. F.
Hutton
, and
K.
Walters
,
An Introduction to Rheology
(
Elsevier
,
Amsterdam
,
1989
).
15.
K.
Yasuda
,
R. C.
Armstrong
, and
R. E.
Cohen
, “
Shear flow properties of concentrated solutions of linear and star branched polystyrenes
,”
Rheol. Acta
20
,
163
178
(
1981
).
16.
F.
Snijkers
and
D.
Vlassopoulos
, “
Appraisal of the Cox–Merz rule for well-characterized entangled linear and branched polymers
,”
Rheol. Acta
53
,
935
946
(
2014
).
17.
G. V.
Vinogradov
and
A. Ya.
Malkin
,
Rheology of Polymers
(
Mir
,
Moscow
,
1980
).
18.
J. M.
Dealy
and
K. F.
Wissbrun
,
Melt Rheology and Its Role in Plastics Processing: Theory and Applications
(
Van Nostrand Reinhold
,
New York
,
1990
).
19.
J. M.
Dealy
and
J.
Wang
,
Melt Rheology and Its Applications in the Plastics Industry
,
2nd ed.
(
Springer
,
Dordrecht
,
1999
).
20.
W. R.
Schowalter
,
Mechanics of Non-Newtonian Fluids
(
Pergamon Press
,
Oxford
,
1978
).
21.
S.
Middleman
,
The Flow of High Polymers
(
Wiley
,
New York
,
1968
).
22.
R. B.
Bird
and
A. J.
Giacomin
, “
John Douglass Ferry 1912–2002: For developing experimental and a conceptual framework for modern viscoelasticity of polymers
,”
Memorial Tributes, National Academy of Engineering of the United States of America
(
The National Academies Press
,
Washington, DC
,
2013
), Vol.
17
, pp.
96
101
.
23.
R. B.
Bird
and
A. J.
Giacomin
, “
Who conceived the complex viscosity?
,”
Rheol. Acta
51
(
6
),
481
486
(
2012
).
24.
J. M.
Dealy
and
R. G.
Larson
,
Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again
(
Hanser
,
Munich
,
2006
).
25.
W. E.
Stewart
and
J. P.
Sørensen
, “
Hydrodynamic interaction effects in rigid dumbbell suspensions. II. Computations for steady shear flow
,”
Trans. Soc. Rheol.
16
(
1
),
1
13
(
1972
).
26.
O.
Hassager
, “
Kinetic theory and rheology of bead‐rod models for macromolecular solutions. ii. linear unsteady flow properties
,”
J. Chem. Phys.
60
(
5
),
4001
4008
(
1974
); Erratum: In Eq. (2), “ 1 / 2” should be “ 1 / 2 .
27.
M. A.
Kanso
,
A. J.
Giacomin
,
C.
Saengow
, and
J. H.
Piette
, “
Macromolecular architecture and complex viscosity
,”
Phys. Fluids
31
(
8
),
087107
(
2019
), pp. 1–28. Editor's pick. Errata: Ganged in Ref. 8 of Ref. 41 below. In the caption to (Fig. 1. “(rightmost)” should be “(leftmost),” and “(leftmost)” should be “(rightmost).”
28.
M. A.
Kanso
and
A. J.
Giacomin
, “
General rigid bead-rod macromolecular theory
,” in
Recent Advances in Rheology: Theory, Biorheology, Suspension and Interfacial Rheology
,
1st ed
., Chap. 2, edited by
D.
De Kee
and
A.
Ramachandran
,
AIP Publishing
,
Melville
,
NY
,
2022
), pp.
2–1
2–32
; Errata: Below Eq. (2.78), “…increases with N” should be “…increases with N 3 .” Above Eq. (2.80), “(77)” should be “(2.77).”
29.
R. B.
Bird
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
,
2nd ed.
(
John Wiley & Sons, Inc
.,
New York
,
1987
), Vol.
2
.
30.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
,
1st ed.
(
John Wiley & Sons, Inc
.,
New York
,
1977
), Vol.
2
.
31.
M. A.
Kanso
, “
Coronavirus hydrodynamics
,” Ph.D. thesis (
Polymers Research Group, Chemical Engineering Department, Queen's University
,
Kingston, Canada
,
2022
).
32.
R.
Chakraborty
,
D.
Singhal
,
M. A.
Kanso
, and
A. J.
Giacomin
, “
Macromolecular complex viscosity from space-filling equilibrium structure
,”
Phys. Fluids
34
(
9
),
093109
(
2022
).
33.
J. D. J.
Rathinaraj
,
B.
Keshavarz
, and
G. H.
McKinley
, “
Why the Cox–Merz rule and Gleissle mirror relation work: A quantitative analysis using the Wagner integral framework with a fractional Maxwell kernel
,”
Phys. Fluids
34
(
3
),
033106
(
2022
).
34.
A. J.
Giacomin
,
S. J.
Coombs
,
M. C.
Pak
, and
K.-I.
Kim
, “
General rigid bead-rod theory for steady-shear flow
,”
Phys. Fluids
35
(8),
083111
(
2023
).
35.
M. A.
Kanso
,
M. C.
Pak
,
K.-I.
Kim
,
S. J.
Coombs
, and
A. J.
Giacomin
, “
Hydrodynamic interaction and complex viscosity of multi-bead rods
,”
Phys. Fluids
34
(
4
),
043102
043113
(
2022
); Part 1, Editor's pick.
36.
M. A.
Kanso
,
M. C.
Pak
,
R.
Chakraborty
,
K.-I.
Kim
, and
A. J.
Giacomin
, “
Hydrodynamic interaction within canonical macromolecular structures
,”
Phys. Fluids
34
(
8
),
083109
(
2022
); Part 1, Editor's pick.
37.
A. S.
Lodge
,
Elastic Liquids: An Introductory Treatment of Finite-Strain Polymer Rheology
(
Academic Press
,
London
,
1964
).
38.
C. W.
Macosko
,
Rheology: Principles, Measurements, and Applications
(
VCH
,
New York
,
1993
).
39.
J. S.
Vrentas
,
D. C.
Venerus
, and
C. M.
Vrentas
, “
Finite amplitude oscillations of viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
40
,
1
24
(
1991
).
40.
D. C.
Venerus
, “
Rheological constitutive equation development and evaluation for viscoelastic liquids
,” Ph.D. thesis (
The Pennsylvania State University
,
State College
,
PA
,
1989
).
41.
M. A.
Kanso
,
V.
Chaurasia
,
E.
Fried
, and
A. J.
Giacomin
, “Peplomer bulb shape and coronavirus rotational diffusivity,”
Phys. Fluids
33
(
3
),
033115
(
2021
); Part 2, Editor's pick.
You do not currently have access to this content.