Cilia play important roles in fluid transport and development by propagating metachronal waves along cell surfaces. This study numerically investigates the biomechanics of cilia-driven flow of Jeffrey nanofluid in a wavy curved channel. The orthogonal curvilinear coordinates are used for the mathematical formulation of the problem in a set of partial differential equations. The governing equations are simplified using the dimensionless numbers and stream functions and then reduced using the long wavelength and low Reynolds number assumptions. Shooting method is applied to determine velocity, temperature, and nanoparticle concentration profiles. The resultant velocity, temperature profiles, nanoparticle concentration profiles, and streamlines are interpreted and elucidated graphically. The parametric analyses systematically examine the impacts of channel curvature, thermal buoyancy forces, nanoparticle concentrations, Jeffrey fluid rheology, and cilia motion kinematics on transport phenomena. Key findings show temperature and concentration gradients strongly influenced by cilia beating. The study provides deeper insight into the influence of these parameters on the cilia-driven flow in a complex wavy curved channel, bearing potential applications in heat transfer systems, nanotechnology, and biotechnology, among other fields.

1.
P.
Satir
and
S. T.
Christensen
, “
Overview of structure and function of mammalian cilia
,”
Annu. Rev. Physiol.
69
,
377
400
(
2007
).
2.
D. R.
Mitchell
, “
The evolution of eukaryotic cilia and flagella as motile and sensory organelles
,” in
Eukaryotic Membranes Cytoskeleton: Origins Evolution
(Springer, New York, NY,
2007
), pp.
130
140
.
3.
M.
Fliegauf
,
T.
Benzing
, and
H.
Omran
, “
When cilia go bad: Cilia defects and ciliopathies
,”
Nat. Rev. Mol. Cell Biol.
8
(
11
),
880
893
(
2007
).
4.
M.
Polin
,
I.
Tuval
,
K.
Drescher
,
J. P.
Gollub
, and
R. E.
Goldstein
, “
Chlamydomonas swims with two ‘gears’ in a eukaryotic version of run-and-tumble locomotion
,”
Science
325
(
5939
),
487
490
(
2009
).
5.
R. E.
Goldstein
, “
Green algae as model organisms for biological fluid dynamics
,”
Annu. Rev. Fluid Mech.
47
,
343
375
(
2015
).
6.
B.
Button
,
L. H.
Cai
,
C.
Ehre
,
M.
Kesimer
,
D. B.
Hill
,
J. K.
Sheehan
,
R. C.
Boucher
, and
M.
Rubinstein
, “
A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia
,”
Science
337
(
6097
),
937
941
(
2012
).
7.
A. S.
Shah
,
Y.
Ben-Shahar
,
T. O.
Moninger
,
J. N.
Kline
, and
M. J.
Welsh
, “
Motile cilia of human airway epithelia are chemosensory
,”
Science
325
(
5944
),
1131
1134
(
2009
).
8.
R.
Faubel
,
C.
Westendorf
,
E.
Bodenschatz
, and
G.
Eichele
, “
Cilia-based flow network in the brain ventricles
,”
Science
353
(
6295
),
176
178
(
2016
).
9.
R. A.
Lyons
,
E.
Saridogan
, and
O.
Djahanbakhch
, “
The reproductive significance of human Fallopian tube cilia
,”
Hum. Reprod. Update
12
(
4
),
363
372
(
2006
).
10.
R. A.
Bloodgood
, “
Sensory reception is an attribute of both primary cilia and motile cilia
,”
J. Cell Sci.
123
(
4
),
505
509
(
2010
).
11.
S.
Mao
,
A. S.
Shah
,
T. O.
Moninger
,
L. S.
Ostedgaard
,
L.
Lu
,
X. X.
Tang
,
I. M.
Thornell
,
L. R.
Reznikov
,
S. E.
Ernst
,
P. H.
Karp
, and
P.
Tan
, “
Motile cilia of human airway epithelia contain hedgehog signaling components that mediate noncanonical hedgehog signaling
,”
Proc. Natl. Acad. Sci. U. S. A.
115
(
6
),
1370
1375
(
2018
).
12.
R.
Golestanian
,
J. M.
Yeomans
, and
N.
Uchida
, “
Hydrodynamic synchronization at low Reynolds number
,”
Soft Matter
7
(
7
),
3074
3082
(
2011
).
13.
J.
Elgeti
and
G.
Gompper
, “
Emergence of metachronal waves in cilia arrays
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
12
),
4470
4475
(
2013
).
14.
A. R.
Shields
,
B. L.
Fiser
,
B. A.
Evans
,
M. R.
Falvo
,
S.
Washburn
, and
R.
Superfine
, “
Biomimetic cilia arrays generate simultaneous pumping and mixing regimes
,”
Proc. Natl. Acad. Sci. U. S. A.
107
(
36
),
15670
15675
(
2010
).
15.
J.
Espinosa-Garcia
,
E.
Lauga
, and
R.
Zenit
, “
Fluid elasticity increases the locomotion of flexible swimmers
,”
Phys. Fluids
25
(
3
),
031701
(
2013
).
16.
T.
Omari
,
H.
Sugai
,
Y.
Imai
, and
T.
Ishikawa
, “
Nodal cilia-driven flow: Development of a computational model of the nodal cilia axoneme
,”
J. Biomech.
61
,
242
249
(
2017
).
17.
A.
Takamatsu
,
T.
Ishikawa
,
K.
Shinohara
, and
H.
Hamada
, “
Asymmetric rotational stroke in mouse node cilia during left-right determination
,”
Phys. Rev. E
87
(
5
),
050701
(
2013
).
18.
D.
Chen
,
D.
Norris
, and
Y.
Ventikos
, “
The active and passive ciliary motion in the embryo node: A computational fluid dynamics model
,”
J. Biomech.
42
(
3
),
210
216
(
2009
).
19.
D.
Chen
and
Y.
Zhong
, “
A computational model of dynein activation patterns that can explain nodal cilia rotation
,”
Biophys. J.
109
(
1
),
35
48
(
2015
).
20.
D.
Chen
,
Y.
Zhong
,
K.
Shinohara
,
T.
Nishida
,
T.
Hasegawa
, and
H.
Hamada
, “
The dynein-triggered ciliary motion in embryonic nodes: An exploratory study based on computational models
,”
Bio-Med. Mater. Eng.
24
(
6
),
2495
2501
(
2014
).
21.
K.
Maqbool
,
N.
Manzoor
,
S.
Poncet
, and
A. M.
Siddiqui
, “
Inertial flow of viscoelastic second grade fluid in a ciliated channel under a magnetic field and Darcy's resistance
,”
Appl. Sci.
11
,
3819
(
2021
).
22.
S.
Nadeem
and
H.
Sadaf
, “
Theoretical analysis of Cu-blood nanofluid for metachronal wave of cilia motion in a curved channel
,”
IEEE Trans. Nanobiosci.
14
(
4
),
447
454
(
2015
).
23.
S.
Nadeem
,
A.
Munim
,
A.
Shaheen
, and
S.
Hussain
, “
Physiological flow of Carreau fluid due to ciliary motion
,”
J. AIP Adv.
6
,
035125
(
2016
).
24.
M. M.
Bhatti
,
A.
Zeeshan
, and
M. M.
Rashidi
, “
Influence of magnetohydrodynamics on metachronal wave of particle-fluid suspension due to cilia motion
,”
Eng. Sci. Technol. Int. J.
20
,
265
271
(
2017
).
25.
A.
Riaz
,
S.
Almutairi
,
S. E.
Alhazmi
,
A.
Saleem
,
S.
Nadeem
, and
A.
Abdelrahman
, “
Insight into the cilia motion of electrically conducting Cu-blood nanofluid through a uniform curved channel when entropy generation is significant
,”
Alexandria Eng. J.
61
,
10613
10630
(
2022
).
26.
N. S.
Akbar
and
Z. H.
Khan
, “
Influence of magnetic field for metachoronical beating of cilia for nanofluid with Newtonian heating
,”
J. Magn. Magn. Mater.
381
,
235
242
(
2015
).
27.
H.
Sadaf
,
Z.
Asghar
, and
N.
Iftikhar
, “
Cilia- driven flow analysis of cross fluid model in a horizontal channel
,”
Comput. Part. Mech.
10
,
943
950
(
2023
).
28.
S.
Munawar
and
N.
Saleem
, “
Mixed convective cilia triggered stream of magneto ternary nanofluid through elastic electroosmotic pump: A comparative entropic analysis
,”
J. Mol. Liq.
352
,
118662
(
2022
).
29.
A.
Ebaid
, “
Remarks on the homotopy perturbation method for the peristaltic flow of Jeffrey fluid with nano-particles in an asymmetric channel
,”
Comput. Math. Appl.
68
(
3
),
77
85
(
2014
).
30.
G.
Sunitha
, “
Influence of thermal radiation on peristaltic blood flow of a Jeffrey fluid with double diffusion in the presence of gold nanoparticles
,”
Inf. Med. Unlocked
17
,
100272
(
2019
).
31.
N.
Anbuchezhian
,
K.
Srinivasan
,
K.
Chandrasekaran
, and
R.
Kandasamy
, “
Thermophoresis and Brownian motion effects on boundary layer flow of nanofluid in presence of thermal stratification due to solar energy
,”
Appl. Math. Mech.
33
,
765
780
(
2012
).
32.
O. D.
Makinde
and
I. L.
Animasaun
, “
Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution
,”
J. Mol. Liq.
221
,
733
743
(
2016
).
33.
S.
Goudarzi
,
M.
Shekaramiz
,
A.
Omidvar
,
E.
Golab
,
A.
Karimipour
, and
A.
Karimipour
, “
Nanoparticles migration due to thermophoresis and Brownian motion and its impact on Ag-MgO/Water hybrid nanofluid natural convection
,”
Powder Technol.
375
,
493
503
(
2020
).
34.
P. Y.
Xiong
,
K.
Javid
,
M.
Raza
,
S. U.
Khan
,
M. I.
Khan
, and
Y. M.
Chu
, “
MHD flow study of viscous fluid through a complex wavy curved surface due to bio-mimetic propulsion under porosity and second-order slip effects
,”
Commun. Theor. Phys.
73
(
8
),
085001
(
2021
).
35.
Z.
Asghar
,
K.
Javid
,
M.
Waqas
,
A.
Ghaffari
, and
W. A.
Khan
, “
Cilia-driven fluid flow in a curved channel: Effects of complex wave and porous medium
,”
Fluid Dyn. Res.
52
(
1
),
015514
(
2020
).
36.
Z.
Hussain
,
K.
Al-Khaled
,
U.
Ashrif
,
A.
Abbasi
,
S. U.
Khan
,
W.
Farooq
,
M.
Ijaz Khan
,
S.
Farooq
, and
M. Y.
Malik
, “
A mathematical model for radiative peristaltic flow of Jeffrey fluid in curved channel with Joule heating and different walls: Shooting technique analysis
,”
Ain Shams Eng. J.
13
(
5
),
101685
(
2022
).
37.
T.
Hayat
,
S.
Farooq
, and
A.
Alsaedi
, “
MHD peristaltic flow in a curved channel with convective condition
,”
J. Mech.
33
(
4
),
483
499
(
2017
).
38.
J.
Buongiorno
, “
Convective transport in nanofluids
,”
J. Heat Transfer
128
,
240
(
2006
).
39.
V. K.
Narla
,
K. M.
Prasad
, and
J. V.
Ramanamurthy
, “
Peristaltic transport of Jeffrey nanofluid in curved channels
,”
Procedia Eng.
127
,
869
876
(
2015
).
40.
Computational Methods in Engineering Boundary Value Problems
, edited by
T. Y.
Na
(
Academic Press
,
1980
).
41.
S. N.
Ha
, “
A nonlinear shooting method for two-point boundary value problems
,”
Comput. Math. Appl.
42
(
10–11
),
1411
1420
(
2001
).
42.
C.
Zhao
,
C. F.
Cheung
, and
P.
Xu
, “
High-efficiency sub-microscale uncertainty measurement method using pattern recognition
,”
ISA Trans.
101
,
503
514
(
2020
).
43.
H. Y.
Jin
and
Z.
Wang
, “
Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model
,”
Math. Methods Appl. Sci.
38
(
3
),
444
457
(
2015
).
44.
Z.
Dai
,
J.
Xie
, and
M.
Jiang
, “
A coupled peridynamics–smoothed particle hydrodynamics model for fracture analysis of fluid–structure interactions
,”
Ocean Eng.
279
,
114582
(
2023
).
45.
S.
Zhu
,
X.
Li
,
Y.
Bian
,
N.
Dai
,
J.
Yong
,
Y.
Hu
,
J.
Li
,
D.
Wu
, and
J.
Chu
, “
Inclination-enabled generalized microfluid rectifiers via anisotropic slippery hollow tracks
,”
Adv. Mater. Technol.
8
,
2300267
(
2023
).
46.
Y.
Tang
,
S.
Liu
,
Y.
Deng
,
Y.
Zhang
,
L.
Yin
, and
W.
Zheng
, “
An improved method for soft tissue modeling
,”
Biomed. Signal Process. Control
65
,
102367
(
2021
).
47.
S.
Lu
,
J.
Yang
,
B.
Yang
,
Z.
Yin
,
M.
Liu
,
L.
Yin
, and
W.
Zheng
, “
Analysis and design of surgical instrument localization algorithm
,”
Comput. Model. Eng. Sci.
137
(
1
),
669
685
(
2023
).
You do not currently have access to this content.