The additive manufacturing technology of extrusion of concrete mixtures through a nozzle and deposition layer-by-layer is commonly called three-dimensional concrete printing (3DCP). Such materials are rheologically characterized by yield stress and viscosity. The Bingham model is a good approximation of their rheological behavior. We have developed approximate expressions for determination of pressure for flow through slightly tapered tubes and wedge-shaped extrusion dies, starting from the Buckingham–Reiner equation for flow of a Bingham fluid in a straight tube. The predictions are compared to numerical simulations for convergence half-angles (taper) from 0° to 30° and to analytical solutions available in the literature. Good comparison has been obtained for taper angles up to 15° but the agreement deteriorates as the angle increases. Some experimental data available in the literature have been analyzed, and the challenges for prediction of pressure drop in flow of concrete mixtures through tubes and dies, including entry flow losses, are discussed.

1.
R.
Lapasin
,
A.
Papo
, and
S.
Rajgelj
, “
Flow behavior of fresh cement pastes. A comparison of different rheological instruments and techniques
,”
Cem. Concr. Res
13
(
3
),
349
356
(
1983
).
2.
A.
Papo
and
L.
Piani
, “
Effect of various superplasticizers on the rheological properties of Portland cement pastes
,”
Cem. Concr. Res
34
(
11
),
2097
2101
(
2004
).
3.
R. J.
Flatt
,
N.
Martys
, and
L.
Bergström
, “
The rheology of cementitious materials
,”
MRS Bull.
29
(
5
),
314
318
(
2004
).
4.
M.
Haist
,
J.
Link
,
D.
Nicia
,
S.
Leinitz
,
C.
Baumert
,
T.
von Bronk
,
D.
Cotardo
,
M.
Eslami Pirharati
,
S.
Fataei
,
H.
Garrecht
,
C.
Gehlen
,
I.
Hauschildt
,
I.
Ivanova
,
S.
Jesinghausen
,
C.
Klein
,
H.-W.
Krauss
,
L.
Lohaus
,
D.
Lowke
,
O.
Mazanec
,
S.
Pawelczyk
,
U.
Pott
,
N. W.
Radebe
,
J. J.
Riedmiller
,
H.-J.
Schmid
,
W.
Schmidt
,
E.
Secrieru
,
D.
Stephan
,
M.
Thiedeitz
,
M.
Wilhelm
, and
V.
Mechtcherine
, “
Interlaboratory study on rheological properties of cement pastes and reference substances: Comparability of measurements performed with different rheometers and measurements geometries
,”
Mater. Struct.
53
,
92
(
2020
).
5.
Understanding the Rheology of Concrete
, edited by
N.
Roussel
(
Woodhead Publishing
,
Philadelphia
,
2012
).
6.
G.
De Schutter
,
K.
Lesage
,
V.
Mechtcherine
,
V. N.
Nerella
,
G.
Habert
, and
I.
Agusti-Juan
, “
Vision of 3D printing with concrete–Technical, economic and environmental potentials
,”
Cem. Concr. Res.
112
,
25
36
(
2018
).
7.
N.
Roussel
, “
Rheological requirements for printable concretes
,”
Cem. Concr. Res.
112
,
76
85
(
2018
).
8.
A.
Perrot
,
D.
Rangeard
,
V. N.
Nerella
, and
V.
Mechtcherine
, “
Extrusion of cement-based materials - an overview
,”
RILEM Tech. Lett.
3
,
91
97
(
2019
).
9.
H.
Alghamdi
,
S. A. O.
Nair
, and
N.
Neithalath
, “
Insights into material design, extrusion, rheology, and properties of 3D-printable alkali-activated fly ash-based binders
,”
Mater. Des.
167
,
107634
(
2019
).
10.
J.
Benbow
and
J.
Bridgwater
,
Paste Flow and Extrusion
(
Clarendon Press
,
Oxford, UK
,
1993
).
11.
R. A.
Basterfield
,
C. J.
Lawrence
, and
M. J.
Adams
, “
On the interpretation of orifice extrusion data for viscoplastic materials
,”
Chem. Eng. Sci.
60
(
10
),
2599
2607
(
2005
).
12.
P.
Shakor
,
S.
Nejadi
, and
G.
Paul
, “
A study into the effect of different nozzle shapes and fibre-reinforcement in 3D printed mortar
,”
Materials
12
(
10
),
1708
(
2019
).
13.
M.
Kalthoff
,
M.
Raupach
, and
T.
Matschei
, “
Investigation of rheological test methods for the suitability of mortars for manufacturing of textile-reinforced concrete using a laboratory mortar extruder (LabMorTex)
,”
Constr. Mater.
2
,
217
233
(
2022
).
14.
J.
Reinold
,
V. N.
Nerella
,
V.
Mechtcherine
, and
G.
Meschke
, “
Extrusion process simulation and layer shape prediction during 3D-concrete-printing using the particle finite element method
,”
Autom. Constr.
136
,
104173
(
2022
).
15.
L.
Yang
,
S. M. E.
Sepasgozar
,
S.
Shirowzhan
,
A.
Kashani
, and
D.
Edwards
, “
Nozzle criteria for enhancing extrudability, buildability and interlayer bonding in 3D printing concrete
,”
Autom. Constr.
146
,
104671
(
2023
).
16.
S. C.
Paul
,
Y. W. D.
Tay
,
B.
Panda
, and
M. J.
Tan
, “
Fresh and hardened properties of 3D printable cementitious materials for building and construction
,”
Arch. Civil Mech. Eng.
18
,
311
319
(
2018
).
17.
Y.
Weng
,
M.
Li
,
M. J.
Tan
, and
S.
Qian
, “
Design 3D printing cementitious materials via Fuller Thompson theory and Marson-Percy model
,”
Constr. Build. Mater.
163
,
600
610
(
2018
).
18.
Y.
Zhang
,
Y.
Zhang
,
G.
Liu
,
Y.
Yang
,
M.
Wu
, and
B.
Pang
, “
Fresh properties of a novel 3D printing concrete ink
,”
Constr. Build. Mater.
174
,
263
271
(
2018
).
19.
H.
Alghamdi
and
N.
Neithalath
, “
Synthesis and characterization of 3D-printable geopolymeric foams for thermally efficient building envelope materials
,”
Cem. Concr. Compos.
104
,
103377
(
2019
).
20.
V. N.
Nerella
,
M.
Näther
,
A.
Iqbal
,
M.
Butler
, and
V.
Mechtcherine
, “
Inline quantification of extrudability of cementitious materials for digital construction
,”
Cem. Concr. Compos.
95
,
260
270
(
2019
).
21.
R.
Comminal
,
W. R. L.
da Silva
,
T. J.
Andersen
,
H.
Stang
, and
J.
Spangenberg
, “
Modelling of 3D concrete printing based on computational fluid dynamics
,”
Cem. Concr. Res.
138
,
106256
(
2020
).
22.
K.
Manikandan
,
K.
Wi
,
X.
Zhang
,
K.
Wang
, and
H.
Qin
, “
Characterizing cement mixtures for concrete 3D printing
,”
Manuf. Lett.
24
,
33
37
(
2020
).
23.
S. A. O.
Nair
,
S.
Panda
,
M.
Santhanam
,
G.
Sant
, and
N.
Neithalath
, “
A critical examination of the influence of material characteristics and extruder geometry on 3D printing of cementitious binders
,”
Cem. Concr. Compos.
112
,
103671
(
2020
).
24.
M. K.
Mohan
,
A. V.
Rahul
,
K.
Van Tittelboom
, and
G.
de Schutter
, “
Rheological and pumping behavior of 3D printable cementitious materials with varying aggregate content
,”
Cem. Concr. Res.
139
,
106258
(
2021
).
25.
N.
Zhang
and
J.
Sanjayan
, “
Extrusion nozzle design and print parameter selections for 3D concrete printing
,”
Cem. Concr. Compos.
137
,
104939
(
2023
).
26.
X.
Guo
,
J.
Yang
, and
G.
Xiong
, “
Influence of supplementary cementitious materials on rheological properties of 3D printed fly ash based geopolymer
,”
Cem. Concr. Compos.
114
,
103820
(
2020
).
27.
Z.
Zhao
,
M.
Chen
,
J.
Xu
,
L.
Li
,
Y.
Huang
,
L.
Yang
,
P.
Zhao
, and
L.
Lu
, “
Mix design and rheological properties of magnesium potassium phosphate cement composites based on the 3D printing extrusion system
,”
Constr. Build. Mater.
284
,
122797
(
2021
).
28.
M. A. D.
Najvani
,
D. H.
Murcia
,
E.
Soliman
, and
M. M. R.
Taha
, “
Early-agre strength and failure characteristics of 3D printable polymer concrete
,”
Constr. Build. Mater.
394
,
132119
(
2023
).
29.
A. R.
Arunothayan
,
B.
Nematollahi
,
K. H.
Khayat
,
A.
Ramesh
, and
J. G.
Sanjayan
, “
Rheological characterization of ultra-high performance concrete for 3D printing
,”
Cem. Concr. Compos.
136
,
104854
(
2023
).
30.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids Vol. 1: Fluid Mechanics
,
2nd ed.
(
Wiley
,
1987
).
31.
J. F.
Steffe
,
Rheological Methods in Food Process Engineering
,
2nd ed.
(
Freeman Press
,
Michigan
,
1996
).
32.
J.
Vlachopoulos
and
N. D.
Polychronopoulos
,
Understanding Rheology and Technology of Polymer Extrusion
(
Polydynamics Inc
,
Ontario, Canada
,
2019
).
33.
S. H.
Bong
,
M.
Xia
,
B.
Nematollahi
, and
C.
Shi
, “
Ambient temperature cured ‘just-add-water’ geopolymer for 3D concrete printing applications
,”
Cem. Concr. Compos.
121
,
104060
(
2021
).
34.
Y.
Chen
,
S.
He
,
Y.
Gan
,
O.
Çopuroğlu
,
F.
Veer
, and
E.
Schlangen
, “
A review of printing strategies, sustainable cementitious materials and characterization methods in the context of extrusion-based 3D concrete printing
,”
J. Build. Eng.
45
,
103599
(
2022
).
35.
D.
Kaplan
,
F.
de Larrard
, and
T.
Sedran
, “
Design of concrete pumping circuit
,”
ACI Mater. J.
102
,
110
117
(
2005
).
36.
J.
Vlachopoulos
and
P. S.
Scott
, “
Pressure drop for molten polymer flow through tapered dies
,”
Adv. Polym. Technol.
5
(
2
),
81
86
(
1985
).
37.
R. B.
Bird
,
G. C.
Dai
, and
B. J.
Yarusso
, “
The rheology and flow of viscoplastic materials
,”
Rev. Chem. Eng.
1
(
1
),
1
70
(
1983
).
38.
ANSYS Inc
,
Ansys Fluent Theory Guide, Release 2022 R1
(
ANSYS Inc.
,
Canonsburg
,
2022
).
39.
R. I.
Tanner
and
J. F.
Milthorpe
, “
Numerical simulation of the flow of fluids with yield stress
,” in
Proceedings of the Numerical Methods in Laminar and Turbulent Flow
, Seattle (
1983
), Vol.
680–690
.
40.
E. J.
O'Donovan
and
R. I.
Tanner
, “
Numerical study of the Bingham squeeze film problem
,”
J. Non-Newtonian Fluid Mech.
15
(
1
),
75
83
(
1984
).
41.
C. R.
Beverly
and
R. I.
Tanner
, “
Numerical analysis of extrudate swell in viscoelastic materials with yield stress
,”
J. Rheol.
33
,
989
1009
(
1989
).
42.
K.
Vasilic
,
W.
Schmidt
,
H. C.
Kühne
,
F.
Haamkens
,
V.
Mechtcherine
, and
N.
Roussel
, “
Flow of fresh concrete through reinforced elements: Experimental validation of the porous analogy numerical method
,”
Cem. Concr. Res.
88
,
1
6
(
2016
).
43.
S.
Tichko
,
G.
De Schutter
,
P.
Troch
,
J.
Vierendeels
,
R.
Verhoeven
,
K.
Lesage
, and
N.
Cauberg
, “
Influence of the viscosity of self-compacting concrete and the presence of rebars on the formwork pressure while filling bottom up
,”
Eng. Struct.
101
,
698
714
(
2015
).
44.
J. J.
Taylor-West
and
A. J.
Hogg
, “
The converging flow of viscoplastic fluid in a wedge or cone
,”
J. Fluid Mech.
915
,
A69
(
2021
).
45.
S. G.
Hatzikiriakos
and
E.
Mitsoulis
, “
Slip effects in tapered dies
,”
Polym. Eng. Sci.
49
,
1960
1969
(
2009
).
46.
H. A.
Ardakani
,
E.
Mitsoulis
, and
S. G.
Hatzikiriakos
, “
Thixotropic flow of toothpaste through extrusion dies
,”
J. Non-Newtonian Fluid Mech.
166
,
1262
1271
(
2011
).
47.
L.
Fusi
,
K. D.
Housiadas
, and
G. C.
Georgiou
, “
Flow of a Bingham fluid in a pipe of variable radius
,”
J. Non-Newtonian Fluid Mech.
285
,
104393
(
2020
).
48.
P.
Panaseti
,
Y.
Damianou
,
G. C.
Georgiou
, and
K. D.
Housiadas
, “
Pressure-driven flow of a Herschel–Bulkley fluid with pressure-dependent rheological parameters
,”
Phys. Fluids
30
,
030701
(
2018
).
49.
O. H.
Wallevik
,
D.
Feys
,
J. E.
Wallevik
, and
K. H.
Khayat
, “
Avoiding inaccurate interpretations of rheological measurements for cement-based materials
,”
Cem. Concr. Res.
78
,
100
109
(
2015
).
50.
D.
De Kee
, “
Yield stress measurements technique: A review
,”
Phys. Fluids
33
,
111301
(
2021
).
51.
S.
Jacobsen
,
J. H.
Mork
,
S. F.
Lee
, and
L.
Haugan
, “
Pumping of concrete and mortar—State of the art
,” COIN Project Report No. 5, COIN P2 Improved construction technology. SP 2.4 Workability (SINTEF Building and Infrastructure, 2008).
52.
B.
Nazari
,
E.
Moghimi
, and
D. W.
Bousfield
, “
Experimental footprints of a water-rich depletion layer in the Herschel–Bulkley pipe flow of solidifying polyelectrolytes
,”
Phys. Fluids
35
,
013112
(
2023
).
53.
C. W.
Macosko
,
Rheology: Principles, Measurements and Applications
(
Wiley-VCH
,
New York
,
1994
).
54.
R. I.
Tanner
,
Engineering Rheology
,
2nd ed.
(
Oxford University Press
,
New York
,
1988
).
55.
R.
Alfani
,
N.
Grizzuti
,
G. L.
Guerrini
, and
G.
Lezzi
, “
The use of the capillary rheometer for the rheological evaluation of extrudable cement-based materials
,”
Rheol. Acta
46
,
703
709
(
2007
).
56.
S. S.
Abdali
,
E.
Mitsoulis
, and
N. C.
Markatos
, “
Entry and exit flows of Bingham fluids
,”
J. Rheol.
36
,
389
407
(
1992
).
57.
D. J.
Horrobin
and
R. M.
Nedderman
, “
Die entry pressure drops in paste extrusion
,”
Chem. Eng. Sci.
53
(
18
),
3215
3225
(
1998
).
58.
F. A.
Cardoso
,
V. M.
John
, and
R. G.
Pileggi
, “
Rheological behavior of mortars under different squeezing rates
,”
Cem. Concr. Res.
39
,
748
753
(
2009
).
59.
R. G.
Pileggi
,
A. M.
Betioli
,
F. A.
Cardoso
, and
V. M.
John
, “
Extended rheological characterization of cement pastes: Squeeze flow plus rotational rheometry
,” in
12th International Congress on the Chemistry of Cement, July 8–13
,
Montréal, Canada
,
2007
.
60.
F. A.
Cardoso
,
V. M.
John
,
R. G.
Pileggi
, and
P. F. G.
Banfill
, “
Characterisation of rendering mortars by squeeze-flow and rotational rheometry
,”
Cem. Concr. Res.
57
,
79
87
(
2014
).
You do not currently have access to this content.