The main contribution of this study is the effects of the operating conditions on the internal vapor pressure and temperature in an annular screen wick heat pipe, using distilled water as the working fluid. High-resolution pressure transducers, optical fiber distributed temperature sensors, and K-type thermocouples were employed to measure the internal and external temperatures as well as the local static pressures at different axial positions of the heat pipe. Temporal and frequency analysis using a one-dimensional continuous wavelet transform was performed on the differential pressure data to characterize flow behavior and infer the flow regime occurring within the heat pipe. The heat pipe was tested in multiple orientations with respect to the horizon ( θ = 0 ° , 45 °, and 90 °), heat loads (25, 50, and 75 W), and condenser coolant temperatures ( T w , i n = 10  ° C, 20  ° C, and 30  ° C). To estimate the vapor-phase flow friction factor for multiple Reynolds numbers, the Lockhart–Martinelli correlation was employed. This study provides critical experimental data and analyses for complex two-phase flow behavior in an annular wick heat pipe geometry. The thermal resistance and effective thermal conductivity were estimated as a function of the heat pipe orientation and power input. The experimental investigation revealed that power input and orientation influence both the internal vapor core and external surface temperatures, as well as the local pressure response. The outcomes from this study provide a valuable database that supports the advancement of heat pipe design, modeling, and validation.

1.
S. W.
Chi
,
Heat Pipe Theory and Practice: A Sourcebook
, Series in Thermal and Fluids Engineering (
Hemisphere Publishing Corp.
,
1976
).
2.
B.
Zohuri
,
Heat Pipe Design and Technology: Modern Applications for Practical Thermal Management
(
Springer
,
2016
).
3.
R. S.
Gaugler
, “
Heat transfer device
,” U.S. Patent 2,350,348 (6 June
1944
).
4.
G. M.
Grover
,
T. P.
Cotter
, and
G. F.
Erickson
, “
Structures of very high thermal conductance
,”
J. Appl. Phys.
35
,
1990
1991
(
1964
).
5.
K.
Shukla
et al, “
Heat pipe for aerospace applications—An overview
,”
J. Electron. Cooling Therm. Control
05
,
1
(
2015
).
6.
X.
Chen
,
H.
Ye
,
X.
Fan
,
T.
Ren
, and
G.
Zhang
, “
A review of small heat pipes for electronics
,”
Appl. Therm. Eng.
96
,
1
17
(
2016
).
7.
Y.
Yau
and
M.
Ahmadzadehtalatapeh
, “
A review on the application of horizontal heat pipe heat exchangers in air conditioning systems in the tropics
,”
Appl. Therm. Eng.
30
,
77
84
(
2010
).
8.
J. M.
Maldonado
,
A.
de Gracia
, and
L. F.
Cabeza
, “
Systematic review on the use of heat pipes in latent heat thermal energy storage tanks
,”
J. Energy Storage
32
,
101733
(
2020
).
9.
B.
Zohuri
,
Heat Pipe Applications in Fission Driven Nuclear Power Plants
(
Springer
,
2019
).
10.
G.
Karahalios
, “
Mixed convection flow in a heated curved pipe with core
,”
Phys. Fluids A
2
,
2164
2175
(
1990
).
11.
R.
Savino
and
D.
Paterna
, “
Marangoni effect and heat pipe dry-out
,”
Phys. Fluids
18
,
118103
(
2006
).
12.
J. G.
Monroe
,
Z. S.
Aspin
,
J. D.
Fairley
, and
S. M.
Thompson
, “
Analysis and comparison of internal and external temperature measurements of a tubular oscillating heat pipe
,”
Exp. Therm. Fluid Sci.
84
,
165
178
(
2017
).
13.
Y.
ho Park
,
M. J.
Nine
,
H.
shik Chung
, and
H.
min Jeong
, “
Characterizing pressure fluctuation into single-loop oscillating heat pipe
,”
J. Central South Univ.
19
,
2578
2583
(
2012
).
14.
M.
Mahdavi
,
S.
Tiari
,
S.
De Schampheleire
, and
S.
Qiu
, “
Experimental study of the thermal characteristics of a heat pipe
,”
Exp. Therm. Fluid Sci.
93
,
292
304
(
2018
).
15.
A.
Rath
and
M. R.
Flynn
, “
Core annular flow theory as applied to the adiabatic section of heat pipes
,”
Phys. Fluids
32
,
083607
(
2020
).
16.
X.
Liu
and
G.
Peterson
, “
Numerical analysis of vapor flow in a micro heat pipe
,” AIAA Paper No. 96-0475,
1996
.
17.
F.
Issacci
,
I.
Catton
, and
N. M.
Ghoniem
, “
Vapor dynamics of heat pipe start-up
,”
J. Heat Transfer
113
,
985
994
(
1991
).
18.
D.
Shaver
and
A.
Tentner
, “
Calculation of friction factors in heat pipes using CFD in support of the Sockeye code
,”
Report No. ANL/NSE-20/47
(
2020
).
19.
M. A.
Gibson
,
D. I.
Poston
,
P.
McClure
,
T.
Godfroy
,
J.
Sanzi
, and
M. H.
Briggs
, “
The kilopower reactor using Stirling technology (KRUSTY) nuclear ground test results and lessons learned
,” AIAA Paper No. 2018-4973,
2018
.
20.
C.
Wang
,
H.
Sun
,
S.
Tang
,
W.
Tian
,
S.
Qiu
, and
G.
Su
, “
Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system
,”
Nucl. Eng. Technol.
52
,
19
26
(
2020
).
21.
X.
Tian
,
H.
Li
,
D.
Jiang
,
L.
Zhu
,
S.
Chen
, and
X.
Kang
, “
Preliminary feasibility analysis of heat pipe cooled bimodal space nuclear reactor
,”
Prog. Nucl. Energy
138
,
103817
(
2021
).
22.
X.
Liu
,
R.
Zhang
,
Y.
Liang
,
S.
Tang
,
C.
Wang
,
W.
Tian
,
Z.
Zhang
,
S.
Qiu
, and
G.
Su
, “
Core thermal-hydraulic evaluation of a heat pipe cooled nuclear reactor
,”
Ann. Nucl. Energy
142
,
107412
(
2020
).
23.
Z.
Tian
,
X.
Liu
,
C.
Wang
,
D.
Zhang
,
W.
Tian
,
S.
Qiu
, and
G.
Su
, “
Experimental investigation on the heat transfer performance of high-temperature potassium heat pipe for nuclear reactor
,”
Nucl. Eng. Des.
378
,
111182
(
2021
).
24.
J. F. C.
Prenger
,
Heat Pipe Computer Program (Htpipe) User's Manual
(
Los Alamos Scientific Laboratory
,
1979
).
25.
J. E.
Hansel
,
R. A.
Berry
,
D.
Andrs
, and
R. C.
Martineau
,
Sockeye Theory Manual
(
Idaho National Laboratory
,
2020
).
26.
J.
Loyola-Fuentes
,
L.
Pietrasanta
,
M.
Marengo
, and
F.
Coletti
, “
Machine learning algorithms for flow pattern classification in pulsating heat pipes
,”
Energies
15
,
1970
(
2022
).
27.
S.
Chan
,
Z.
Kanai
, and
W.
Yang
, “
Theory of a rotating heat pipe
,”
J. Nucl. Energy
25
,
479
487
(
1971
).
28.
C.
Tien
and
A.
Rohani
, “
Analysis of the effects of vapor pressure drop on heat pipe performance
,”
Int. J. Heat Mass Transfer
17
,
61
67
(
1974
).
29.
T.
Daniels
and
F.
Al-Jumaily
, “
Investigations of the factors affecting the performance of a rotating heat pipe
,”
Int. J. Heat Mass Transfer
18
,
961
973
(
1975
).
30.
A.
Faghri
and
S.
Thomas
, “
Performance characteristics of a concentric annular heat pipe. I. Experimental prediction and analysis of the capillary limit
,”
J. Heat Transfer
111
,
844
(
1989
).
31.
M.
Jayanth
,
Simultaneous Pressure-Temperature Measurements in a Heat Pipe
(
Florida Atlantic University
,
1997
).
32.
R. S.
Reid
,
J. T.
Sena
, and
A. L.
Martinez
, “
Sodium heat pipe module test for the safe-30 reactor prototype
,”
AIP Conf. Proc.
552
,
869
874
(
2001
).
33.
J.
Xu
,
Y.
Li
, and
T.
Wong
, “
High speed flow visualization of a closed loop pulsating heat pipe
,”
Int. J. Heat Mass Transfer
48
,
3338
3351
(
2005
).
34.
S.
Mahjoub
and
A.
Mahtabroshan
, “
Numerical simulation of a conventional heat pipe
,”
World Acad. Sci., Eng. Technol.
39
,
117
122
(
2008
).
35.
R.
Lenhard
,
K.
Kaduchová
, and
Š.
Papučík
, “
Analysis of the fill amount influence on the heat performance of heat pipe
,”
AIP Conf. Proc.
1608
,
146
152
(
2014
).
36.
S.
Chen
,
Z.
Xue
,
D.
Deng
, and
W.
Qu
, “
Accurate temperature measurements of a heat pipe with pressure control: Design descriptions and test results
,”
Heat Pipe Sci. Technol., An Int. J.
6
,
51
(
2015
).
37.
M. N.
Hussain
and
I.
Janajreh
, “
Numerical simulation of a cylindrical heat pipe and performance study
,”
Int. J. Therm. Environ. Eng.
12
,
135
141
(
2016
).
38.
E.
Jiaqiang
,
X.
Zhao
,
Y.
Deng
, and
H.
Zhu
, “
Pressure distribution and flow characteristics of closed oscillating heat pipe during the starting process at different vacuum degrees
,”
Appl. Therm. Eng.
93
,
166
173
(
2016
).
39.
X.
Chang
,
N.
Watanabe
, and
H.
Nagano
, “
Visualization study of a loop heat pipe with two evaporators and one condenser under gravity-assisted condition
,”
Int. J. Heat Mass Transfer
135
,
378
391
(
2019
).
40.
K.
Ishii
and
K.
Fumoto
, “
Temperature visualization and investigation inside evaporator of pulsating heat pipe using temperature-sensitive paint
,”
Appl. Therm. Eng.
155
,
575
583
(
2019
).
41.
Y.
Ma
,
E.
Chen
,
H.
Yu
,
R.
Zhong
,
J.
Deng
,
X.
Chai
,
S.
Huang
,
S.
Ding
, and
Z.
Zhang
, “
Heat pipe failure accident analysis in megawatt heat pipe cooled reactor
,”
Ann. Nucl. Energy
149
,
107755
(
2020
).
42.
C.
Wang
,
L.
Zhang
,
X.
Liu
,
S.
Tang
,
S.
Qiu
, and
G.
Su
, “
Experimental study on startup performance of high temperature potassium heat pipe at different inclination angles and input powers for nuclear reactor application
,”
Ann. Nucl. Energy
136
,
107051
(
2020
).
43.
J.
Seo
,
H.
Kim
, and
Y. A.
Hassan
, “
Experimental study on the startup of the annular wick type heat pipe using fiber optical temperature measurement technique
,”
Phys. Fluids
35
,
057123
(
2023
).
44.
G. Y.
Eastman
, “
The heat pipe
,”
Sci. Am.
218
,
38
47
(
1968
).
45.
A.
Faghri
,
Heat Pipe Science and Technology
(
Global Digital Press
,
1995
).
46.
M. G.
Mwaba
,
X.
Huang
, and
J.
Gu
, “
Influence of wick characteristics on heat pipe performance
,”
Int. J. Energy Res.
30
,
489
499
(
2006
).
47.
B. D.
Iverson
,
T. W.
Davis
,
S. V.
Garimella
,
M. T.
North
, and
S. S.
Kang
, “
Heat and mass transport in heat pipe wick structures
,”
J. Thermophys. Heat Transfer
21
,
392
404
(
2007
).
48.
J.
Seo
,
D.
Kim
,
H.
Kim
, and
Y. A.
Hassan
, “
An experimental investigation on the characteristics of heat pipes with annular type composite wick structure
,”
Nucl. Eng. Des.
390
,
111701
(
2022
).
49.
A.
Ukil
,
H.
Braendle
, and
P.
Krippner
, “
Distributed temperature sensing: Review of technology and applications
,”
IEEE Sens. J.
12
,
885
892
(
2012
).
50.
D.
Holler
,
R.
Vaghetto
, and
Y.
Hassan
, “
High-resolution wall temperature measurements with distributed fiber optic sensors
,”
Int. J. Therm. Sci.
145
,
106042
(
2019
).
51.
O.
Arora
,
B.
Lancaster
,
S. R.
Yang
,
R.
Vaghetto
, and
Y.
Hassan
, “
Advanced flow and temperature measurements in a forced convection molten salt test loop
,”
Ann. Nucl. Energy
159
,
108269
(
2021
).
52.
J. E.
Kemme
, “
Ultimate heat-pipe performance
,”
IEEE Trans. Electron Devices
16
,
717
723
(
1969
).
53.
A.
Faghri
, “
Heat pipes: Review, opportunities and challenges
,”
Front. Heat Pipes
5
,
1
48
(
2014
).
54.
P.
Nemec
,
A.
Čaja
, and
M.
Malcho
, “
Mathematical model for heat transfer limitations of heat pipe,” Math.
Comput. Modell.
57
,
126
136
(
2013
).
55.
J. H.
Jang
,
A.
Faghri
, and
W. S.
Chang
, “
Analysis of the one-dimensional transient compressible vapor flow in heat pipes
,”
Int. J. Heat Mass Transfer
34
,
2029
2037
(
1991
).
56.
R. D.
Fox
,
K. G.
Carothers
, and
W. J.
Thomson
, “
Internal temperature distributions in an operational heat pipe
,”
AIAA J.
10
,
859
860
(
1972
).
57.
R.
Ramachandran
,
K.
Ganesan
,
M.
Rajkumar
,
L.
Asirvatham
, and
S.
Wongwises
, “
Comparative study of the effect of hybrid nanoparticle on the thermal performance of cylindrical screen mesh heat pipe
,”
Int. Commun. Heat Mass Transfer
76
,
294
300
(
2016
).
58.
J.
Seo
and
J.-Y.
Lee
, “
Length effect on entrainment limitation of vertical wickless heat pipe
,”
Int. J. Heat Mass Transfer
101
,
373
378
(
2016
).
59.
J. Y.
Lee
,
M.
Ishii
, and
N. S.
Kim
, “
Instantaneous and objective flow regime identification method for the vertical upward and downward co-current two-phase flow
,”
Int. J. Heat Mass Transfer
51
,
3442
3459
(
2008
).
60.
L.
Pietrasanta
, “
Experimental analysis of two-phase flows in the context of pulsating heat pipes for space applications
,” Ph.D. thesis (
University of Brighton
,
2018
).
61.
H.-M.
Lee
,
M.-C.
Tsai
,
H.-L.
Chen
, and
H.-Y.
Li
, “
Stainless steel heat pipe fabrication, performance testing and modeling
,” in
8th International Conference on Applied Energy, ICAE2016, 8–11 October 2016, Beijing, China
[
Energy Procedia
105
,
4745
4750
(
2017
)].
62.
R.
Kempers
,
D.
Ewing
, and
C.
Ching
, “
Effect of number of mesh layers and fluid loading on the performance of screen mesh wicked heat pipes
,”
Appl. Therm. Eng.
26
,
589
595
(
2006
).
63.
J.
Zhao
,
D.-Z.
Yuan
,
D.-W.
Tang
, and
Y.-Y.
Jiang
, “
Heat transfer characteristics of a concentric annular high temperature heat pipe under anti-gravity conditions
,”
Appl. Therm. Eng.
148
,
817
824
(
2019
).
64.
A. A.
El-Nasr
and
S. M.
El-Haggar
, “
Effective thermal conductivity of heat pipes
,”
Heat Mass Transfer
32
,
97
101
(
1996
).
65.
P.
Dunn
and
D.
Reay
, “
The heat pipe
,”
Phys. Technol.
4
,
187
(
1973
).
66.
H.
Ma
,
G.
Peterson
, and
X.
Peng
, “
Experimental investigation of countercurrent liquid-vapor interactions and their effect on the friction factor
,”
Exp. Therm. Fluid Sci.
12
,
25
32
(
1996
).
67.
Y.
Kuang
and
W.
Wang
, “
Modeling and numerical investigation on the effects of filling ratio in a large separate heat pipe loop
,”
Int. J. Energy Res.
46
,
415
432
(
2022
).
68.
Y.
Li
,
W.
Li
,
J.
Xie
,
J.
Xu
, and
Z.
Miao
, “
Eliminating flooding by phase separation in condenser tube
,”
Phys. Fluids
34
,
123310
(
2022
).
69.
R. W.
Lockhart
and
R.
Martinelli
, “
Proposed correlation of data for isothermal two-phase, two-component flow in pipes
,”
Chem. Eng. Prog.
45
,
39
(
1949
).
70.
Y. S.
Muzychka
and
M. M.
Awad
, “
Asymptotic generalizations of the Lockhart–Martinelli method for two phase flows
,”
J. Fluids Eng.
132
,
031302
(
2010
).
71.
D.
Chisholm
, “
A theoretical basis for the Lockhart–Martinelli correlation for two-phase flow
,”
Int. J. Heat Mass Transfer
10
,
1767
1778
(
1967
).
72.
K.
McQuillan
and
P.
Whalley
, “
Flow patterns in vertical two-phase flow
,”
Int. J. Multiphase Flow
11
,
161
175
(
1985
).
73.
P.-Y. A.
Chuang
, “
An improved steady-state model of loop heat pipes based on experimental and theoretical analyses
,” Ph.D. thesis (
Pennsylvania State University
,
2003
).
74.
W. J.
Bowman
,
Simulated Heat-Pipe Vapor Dynamics (Friction)
(
Air Force Institute of Technology
,
1987
).
75.
M. J.
Nine
,
M. R.
Tanshen
,
B.
Munkhbayar
,
H.
Chung
, and
H.
Jeong
, “
Analysis of pressure fluctuations to evaluate thermal performance of oscillating heat pipe
,”
Energy
70
,
135
142
(
2014
).
76.
N.
Clark
,
E.
McKenzie
, and
M.
Gautam
, “
Differential pressure measurements in a slugging fluidized bed
,”
Powder Technol.
67
,
187
199
(
1991
).
77.
T.
Elperin
and
M.
Klochko
, “
flow regime identification in a two-phase flow using wavelet transform
,”
Exp. Fluids
32
,
674
682
(
2002
).
78.
G.
Buresti
,
G.
Lombardi
, and
J.
Bellazzini
, “
On the analysis of fluctuating velocity signals through methods based on the wavelet and Hilbert transforms
,”
Chaos, Solitons Fractals
20
,
149
158
(
2004
).
79.
K. R.
Borisagar
,
R. M.
Thanki
, and
B. S.
Sedani
, “
Fourier transform, short-time Fourier transform, and wavelet transform
,” in
Speech Enhancement Techniques For Digital Hearing Aids
(
Springer Cham
,
2019
), pp.
63
74
.
80.
Y. T.
Chan
,
Wavelet Basics
(
Kluwer Academic Publishers
,
1995
).
81.
R.
Perna
,
M.
Abela
,
M.
Mameli
,
A.
Mariotti
,
L.
Pietrasanta
,
M.
Marengo
, and
S.
Filippeschi
, “
Flow characterization of a pulsating heat pipe through the wavelet analysis of pressure signals
,”
Appl. Therm. Eng.
171
,
115128
(
2020
).
82.
L.
Zhen
and
Y. A.
Hassan
, “
Wavelet autocorrelation identification of the turbulent flow multi-scales for drag reduction process in microbubbly flows
,”
Chem. Eng. Sci.
61
,
7107
7114
(
2006
).
83.
Y. A.
Hassan
, “
Réduction de traînée par injection de microbulles dans la couche limite d'écoulements en canal
,”
La Houille Blanche
91
,
117
124
(
2005
).
84.
C.
Menezes
,
T.
Melsheimer
,
D. W.
Pyle
,
M.
Kinsky
, and
Y.
Hassan
, “
Flow characteristics within an interior subchannel of a 61-pin wire-wrapped hexagonal rod bundle with a porous blockage
,”
Phys. Fluids
35
,
027106
(
2023
).
85.
F. L.
Klein
,
P.
Seleghim Junior
, and
E.
Hervieu
, “
Time-frequency analysis of intermittent two-phase flows in horizontal piping
,”
J. Braz. Soc. Mech. Sci. Eng.
26
,
174
179
(
2004
).
86.
Q.
Liang
,
X.
Li
,
Y.
Su
, and
X.
Wu
, “
Frequency domain analysis of two-phase flow instabilities in a helical tube once through steam generator for HTGR
,”
Appl. Therm. Eng.
168
,
114839
(
2020
).
87.
H.
Canière
,
C.
T'Joen
,
A.
Willockx
,
M.
De Paepe
,
M.
Christians
,
E.
Van Rooyen
,
L.
Liebenberg
, and
J. P.
Meyer
, “
Horizontal two-phase flow characterization for small diameter tubes with a capacitance sensor
,”
Meas. Sci. Technol.
18
,
2898
(
2007
).
88.
J.
Ye
and
L.
Peng
, “
Flow regime identification of gas liquid two phase flow in vertical tube with small diameter
,”
AIP Conf. Proc.
1428
,
353
358
(
2012
).
89.
A.
Kumar
and
S.
Singh
, “
On the interaction between liquid slug and vapor bubble in the chaotic operation of pulsating heat pipe
,”
Phys. Fluids
35
,
054113
(
2023
).
90.
H.
Canière
,
C.
T-Joen
,
A.
Willockx
, and
M.
De Paepe
, “
Capacitance signal analysis of horizontal two-phase flow in a small diameter tube
,”
Exp. Therm. Fluid Sci.
32
,
892
904
(
2008
).
91.
C.
Dong
,
R.
Qi
, and
L.
Zhang
, “
Flow and heat transfer for a two-phase slug flow in horizontal pipes: A mechanistic model
,”
Phys. Fluids
33
,
034117
(
2021
).
92.
F.
Dong
,
X.
Liu
,
X.
Deng
,
L.
Xu
, and
L.-A.
Xu
, “
Identification of two-phase flow regimes in horizontal, inclined and vertical pipes
,”
Meas. Sci. Technol.
12
,
1069
(
2001
).
93.
M.
Childs
,
R.
Muyshondt
,
R.
Vaghetto
,
D. T.
Nguyen
, and
Y.
Hassan
, “
Experimental Study on the effect of localized blockages on the friction factor of a 61-pin wire-wrapped bundle
,”
J. Fluids Eng.
142
,
111211
(
2020
).
94.
T.
Tharayil
,
L. G.
Asirvatham
,
V.
Ravindran
, and
S.
Wongwises
, “
Effect of filling ratio on the performance of a novel miniature loop heat pipe having different diameter transport lines
,”
Appl. Therm. Eng.
106
,
588
600
(
2016
).
95.
M.
Kole
and
T. K.
Dey
, “
Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids
,”
Appl. Therm. Eng.
50
,
763
770
(
2013
).
96.
C.
Menezes
,
R.
Vaghetto
, and
Y. A.
Hassan
, “
Experimental investigation of the subchannel axial pressure drop and hydraulic characteristics of a 61-pin wire wrapped rod bundle
,”
J. Fluids Eng.
144
,
051403
(
2022
).
97.
H. W.
Coleman
and
W. G.
Steele
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
(
John Wiley & Sons
,
2018
).
You do not currently have access to this content.