We report a theoretical and numerical investigation of the linear and nonlinear dynamics of a thin liquid film of viscosity μ sandwiched between a solid substrate and an unbounded liquid bath of viscosity λ μ. In the limit of negligible inertia, the flow depends on two non-dimensional parameters, namely, λ and a dimensionless measure of the relative strengths of the stabilizing surface tension force and the destabilizing van der Waals force between the substrate and the film. We first analyze the linear stability of the film, providing an analytical dispersion relation. When the viscosity of the outer bath is much larger than that of the film, λ 1, the most amplified wavenumber decreases as k m λ 1 / 3, indicating that very slender dewetting structures are expected when λ becomes large. We then perform fully nonlinear simulations of the complete Stokes equations to investigate the spatial structure of the flow close to rupture revealing that the flow becomes self-similar with the minimum film thickness scaling as h min = K ( λ ) τ 1 / 3 when τ 0, where τ is the time remaining before the singularity. It is demonstrated that the presence of an outer liquid bath affects the self-similar structure obtained by Moreno-Boza et al. [“Stokes theory of thin-film rupture,” Phys. Rev. Fluids 5, 014002 (2020)] through the prefactor of the film thinning law, K ( λ ), and the opening angle of the self-similar film shape, which is shown to decrease with λ.

1.
E.
Beaty
and
J. R.
Lister
, “
Nonuniversal self-similarity for jump-to-contact dynamics between viscous drops under van der Waals attraction
,”
Phys. Rev. Lett.
129
(
6
),
064501
(
2022
).
2.
E.
Beaty
and
J. R.
Lister
, “
Inertial and viscous dynamics of jump-to-contact between fluid drops under van der Waals attraction
,”
J. Fluid Mech.
957
,
A25
(
2023
).
3.
R. V.
Craster
and
O. K.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
(
3
),
1131
(
2009
).
4.
P.-G.
De Gennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
(
3
),
827
(
1985
).
5.
T.
Erneux
and
S. H.
Davis
, “
Nonlinear rupture of free films
,”
Phys. Fluids A
5
(
5
),
1117
1122
(
1993
).
6.
R.
Fetzer
,
K.
Jacobs
,
A.
Münch
,
B.
Wagner
, and
T. P.
Witelski
, “
New slip regimes and the shape of dewetting thin liquid films
,”
Phys. Rev. Lett.
95
(
12
),
127801
(
2005
).
7.
L. S.
Fisher
and
A. A.
Golovin
, “
Nonlinear stability analysis of a two-layer thin liquid film: Dewetting and autophobic behavior
,”
J. Colloid Interface Sci.
291
(
2
),
515
528
(
2005
).
8.
H. C.
Hamaker
, “
The London–van der Waals attraction between spherical particles
,”
Physica
4
(
10
),
1058
1072
(
1937
).
9.
R. K.
Jain
and
E.
Ruckenstein
, “
Stability of stagnant viscous films on a solid surface
,”
J. Colloid Interface Sci.
54
(
1
),
108
116
(
1976
).
10.
K.
Kargupta
,
A.
Sharma
, and
R.
Khanna
, “
Instability, dynamics, and morphology of thin slipping films
,”
Langmuir
20
(
1
),
244
253
(
2004
).
11.
L.
Kondic
,
A. G.
González
,
J. A.
Diez
,
J. D.
Fowlkes
, and
P.
Rack
, “
Liquid-state dewetting of pulsed-laser-heated nanoscale metal films and other geometries
,”
Annu. Rev. Fluid Mech.
52
,
235
262
(
2020
).
12.
A.
Martínez-Calvo
,
D.
Moreno-Boza
, and
A.
Sevilla
, “
The effect of wall slip on the dewetting of ultrathin films on solid substrates: Linear instability and second-order lubrication theory
,”
Phys. Fluids
32
(
10
),
102107
(
2020
).
13.
A.
Martínez-Calvo
,
D.
Moreno-Boza
, and
A.
Sevilla
, “
Non-linear dynamics and self-similarity in the rupture of ultra-thin viscoelastic liquid coatings
,”
Soft Matter
17
(
16
),
4363
4374
(
2021
).
14.
D.
Merkt
,
A.
Pototsky
,
M.
Bestehorn
, and
U.
Thiele
, “
Long-wave theory of bounded two-layer films with a free liquid–liquid interface: Short-and long-time evolution
,”
Phys. Fluids
17
(
6
),
064104
(
2005
).
15.
D.
Moreno-Boza
,
A.
Martínez-Calvo
, and
A.
Sevilla
, “
The role of inertia in the rupture of ultrathin liquid films
,”
Phys. Fluids
32
(
11
),
112114
(
2020
).
16.
D.
Moreno-Boza
,
A.
Martínez-Calvo
, and
A.
Sevilla
, “
Stokes theory of thin-film rupture
,”
Phys. Rev. Fluids
5
(
1
),
014002
(
2020
).
17.
A.
Münch
,
B. A.
Wagner
, and
T. P.
Witelski
, “
Lubrication models with small to large slip lengths
,”
J. Eng. Math.
53
(
3–4
),
359
383
(
2005
).
18.
A.
Münch
,
B.
Wagner
,
M.
Rauscher
, and
R.
Blossey
, “
A thin-film model for corotational Jeffreys fluids under strong slip
,”
Eur. Phys. J. E
20
,
365
368
(
2006
).
19.
A.
Nepomnyashchy
and
I.
Simanovskii
, “
Instabilities and ordered patterns in nonisothermal ultrathin bilayer fluid films
,”
Phys. Rev. Lett.
102
(
16
),
164501
(
2009
).
20.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
(
3
),
931
(
1997
).
21.
A.
Pototsky
,
M.
Bestehorn
,
D.
Merkt
, and
U.
Thiele
, “
Alternative pathways of dewetting for a thin liquid two-layer film
,”
Phys. Rev. E
70
(
2
),
025201
(
2004
).
22.
M.
Rauscher
,
A.
Muench
,
B.
Wagner
, and
R.
Blossey
, “
A thin-film equation for viscoelastic liquids of Jeffreys type
,”
Eur. Phys. J. E
17
,
373
379
(
2005
).
23.
W. S.
Rayleigh
, “
On the instability of a cylinder of viscous liquid under capillary force
,”
London, Edinburgh, and Dublin Philos. Mag. J. Sci.
34
,
145
154
(
1892
).
24.
A.
Sharma
,
C. S.
Kishore
,
S.
Salaniwal
, and
E.
Ruckenstein
, “
Nonlinear stability and rupture of ultrathin free films
,”
Phys. Fluids
7
,
1832
1840
(
1995
).
25.
A.
Vrij
, “
Possible mechanism for the spontaneous rupture of thin, free liquid films
,”
Discuss. Faraday Soc.
42
,
23
33
(
1966
).
26.
W. W.
Zhang
and
J. R.
Lister
, “
Similarity solutions for van der Waals rupture of a thin film on a solid substrate
,”
Phys. Fluids
11
(
9
),
2454
2462
(
1999
).
You do not currently have access to this content.