The paper investigates the influence of the length of multi-walled carbon nanotubes (MWCNTs) dispersed as an additive in solar thermic fluids to enhance thermal conductivity. Here, pure ethylene glycol was chosen as solar thermic fluid due to its low viscosity, high boiling point, excellent chemical stability, and compatibility with the materials used in solar thermal systems. Pristine multi-walled carbon nanotubes are ball milled for 5, 10, and 20 h to reduce the length due to attrition. The effect of ball milling duration on the defect formation and damage to the tubular structure is assessed using Raman spectroscopy. Furthermore, the ball-milled MWCNTs were oxidized to separate amorphous carbon produced during ball milling, increasing their purity. The pristine long nanotubes and ball-milled nanotubes are mixed in pure ethylene glycol in 0.25 wt. %, and the stability of liquids is estimated using Ultraviolet–Visual (UV-Vis) spectroscopy for two months. The stability of the fluids and thermal conductivity have considerably enhanced with the dispersion of shortened MWCNTs. The dispersion of short MWCNTs in ethylene glycol resulted in a 20%–30% increase in thermal conductivity compared to pure ethylene glycol. It was also found that higher ball milling times resulted in ultra-high stability but the properties deteriorated due to the destruction of the MWCNTs' tubular structure, making them useless.

1.
A.
Ravi
,
V.
Kamalesh
,
A.
Narendra Kumar
, and
S.
Ramvir
, “
Sensitivity of thermal conductivity for Al2O3 nanofluids
,”
Exp. Therm. Fluid Sci.
80
,
19
26
(
2017
).
2.
A.
Jajarm
,
H.
Goshayeshi
, and
K.
Bashirnezhad
, “
Experimental study on heat transfer enhancement of carboxylate multi-wall carbon nanotubes in a 3D pulsating heat pipe with a corrugated evaporator
,”
Nanoscale Microscale Thermophys. Eng.
26
,
95
111
(
2022
).
3.
F.
Aviles
,
J.
Cauich
,
L.
Moo
,
–.
Tah
, and
A.
May Pat
, “
Evaluation of mild acid oxidation treatments for MWCNT functionalization
,”
Carbon
47
,
2970
2975
(
2009
).
4.
M.
Baratpour
,
A.
Karimipour
,
M.
Afrand
, and
S.
Wongwises
, “
Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol
,”
Int. Commun. Heat Mass Transfer
74
,
108
113
(
2016
).
5.
M. A.
Nazari
,
M. H.
Ahmadi
,
M.
Sadeghzadeh
et al, “
A review on application of nanofluid in various types of heat pipes
,”
J. Cent. South Univ.
26
,
1021
1041
(
2019
).
6.
E. C.
Okonkwo
,
I.
Wole-Osho
,
I. W.
Almanassra
et al, “
An updated review of nanofluids in various heat transfer devices
,”
J. Therm. Anal. Calorim.
145
,
2817
2872
(
2021
).
7.
L.
Yang
,
W.
Ji
,
J.-N.
Huang
, and
G.
Xu
, “
An updated review on the influential parameters on thermal conductivity of nano-fluids
,”
J. Mol. Liq.
296
,
111780
(
2019
).
8.
X. H.
Chen
,
C. S.
Chen
,
Q.
Chen
,
F. Q.
Cheng
,
G.
Zhang
, and
Z. Z.
Chen
, “
Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD
,”
Mater. Lett.
57
,
734
738
(
2002
).
9.
F. E.
Berger Bioucas
,
M. H.
Rausch
,
J.
Schmidt
et al, “
Effective thermal conductivity of nanofluids: Measurement and prediction
,”
Int. J. Thermophys.
41
,
55
(
2020
).
10.
A. N.
Omrani
,
E.
Esmaeilzadeh
,
M.
Jafari
, and
A.
Behzadmehr
, “
Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids
,”
Diamond Relat. Mater.
93
,
96
104
(
2019
).
11.
L.
Yu
,
Y.
Bian
,
Y.
Liu
, and
X.
Xu
, “
Experimental investigation on rheological properties of water based nanofluids with low MWCNT concentrations
,”
Int. J. Heat Mass Transfer
135
,
175
185
(
2019
).
12.
I.
Wole-osho
,
E. C.
Okonkwo
,
S.
Abbasoglu
et al, “
Nanofluids in solar thermal collectors: Review and limitations
,”
Int. J. Thermophys.
41
,
157
(
2020
).
13.
R. L.
Hamilton
and
O. K.
Crosser
, “
Thermal conductivity of heterogeneous two-component systems
,”
Ind. Eng. Chem. Fundam.
1
,
187
191
(
1962
).
14.
E.
Cuce
,
P. M.
Cuce
,
T.
Guclu
et al, “
On the use of nanofluids in solar energy applications
,”
J. Therm. Sci.
29
,
513
534
(
2020
).
15.
J. C.
Maxwell
,
Electricity and Magnetism
(
Clarendon Press
,
Oxford, UK
,
1881
), p.
1
.
16.
N.
Bozorgan
and
M.
Shafahi
, “
Performance evaluation of nanofluids in solar energy: A review of the recent literature
,”
Micro Nano Syst. Lett.
3
,
5
(
2015
).
17.
Q.
He
,
S.
Zeng
, and
S.
Wang
, “
Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids
,”
Appl. Therm. Eng. J.
88
,
165
171
(
2015
).
18.
I. D.
Rosca
,
F.
Watari
, and
M.
Uo
, “
Oxidation of multiwalled carbon nanotubes by nitric acid
,”
Carbon
43
,
3124
3131
(
2005
).
19.
L.
Vaisman
,
H. D.
Wagner
, and
G.
Marom
, “
The role of surfactants in dispersion of carbon nanotubes
,”
Adv. Colloid Interface Sci.
128–130
,
37
46
(
2006
).
20.
K.
Venkateswarlu
,
K. P. V. K.
Varma
, and
U. K.
Nutakki
, “
Synthesis, characterization and application of mono-, hybrid and ternary nanofluids in hybrid photovoltaic thermal (PV/T) solar systems—A review
,”
J Braz. Soc. Mech. Sci. Eng.
44
,
550
(
2022
).
21.
E. J.
Wasp
,
J. P.
Kenny
, and
R. L.
Gandhi
, “Solid-liquid flow slurry pipeline transportation,” Trans Tech Publications (
1977
), Vol.
1
, p.
4
.
22.
F.
Zhou
,
L.
Yang
,
L.
Sun
et al, “
The preparation, stability and heat-collection efficiency of solar nanofluids
,”
J. Therm. Anal. Calorim.
148
,
591
622
(
2023
).
23.
H. A.
Moghaddam
,
A.
Ghafouri
, and
R.
Faridi Khouzestani
, “
Viscosity and thermal conductivity correlations for various nanofluids based on different temperature and nanoparticle diameter
,”
J Braz. Soc. Mech. Sci. Eng.
43
,
303
(
2021
).
24.
Y.
Yang
,
Z. G.
Zhang
,
E. A.
Grulke
, and
W. B.
Anderson
, “
Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow
,”
Int. J. Heat Mass Transfer
48
,
1107
1116
(
2005
).
25.
Q. H.
Yang
,
P. X.
Hou
,
S.
Bai
,
C.
Liu
, and
H. M.
Cheng
, “
Multi-step purification of carbon nanotubes
,”
Carbon
40
,
81
85
(
2002
).
You do not currently have access to this content.