The present investigation explores the Darcy–Forchheimer unsteady hybrid nanofluid flow over a bidirectionally stretching sheet, with particular emphasis on convective heat transfer. The main focus of this study is to investigate the heat transfer and flow characteristics of sphere, brick, and blade-shaped cadmium telluride and graphite nanoparticle suspensions in water with viscous dissipation and Joule heating effects. The methodology involves the conversion of governing partial differential equations into ordinary differential equations (ODEs) through similarity variables. An implicit Keller Box numerical technique is used to solve the resulting ODEs. Porosity and inertia coefficients reduce the velocity, but the reverse trend is observed for the temperature profiles. Eckert and Biot numbers enhance the temperature of the fluid. The variation in the nanoparticle volume fraction ranges from 2% to 10%. For 10% nanoparticle volume fraction, CdTe/H2O, C/H2O mono-nanofluids achieve 25.71% and 30.76% heat transfer rate, respectively. However, for 10% of the nanoparticle volume fraction, CdTe-C/H2O hybrid nanofluids achieve 28.6%, 34.66%, and 69.07%, and Al2O3-CuO/H2O hybrid nanofluids achieve 31.14%, 38.37%, and 83.21% heat transfer rates for spherical, brick, and blade-shaped nanoparticles. The heat transfer rate of Al2O3-CuO nanoparticles is found to be greater when compared to CdTe-C nanoparticles. In the context of CdTe-C/H2O and Al2O3-CuO/H2O hybrid nanofluids, it has been observed that blade-shaped nanoparticles exhibit heat transfer rates that are 25.55% and 32.41% higher than those achieved with brick-shaped nanoparticles, respectively. Blade-shaped nanoparticles exhibit a greater velocity and heat transport rate in comparison with spherical and brick-shaped nanoparticles.

1.
B. C.
Sakiadis
, “
Boundary-layer behavior on continuous solid surfaces—I: Boundary-layer equations for two-dimensional and axisymmetric flow
,”
AIChE J.
7
,
26
28
(
1961
).
2.
L.
Grubka
and
K.
Bobba
, “
Heat transfer characteristics of a continuous stretching surface with variable temperature
,”
J. Heat Transfer
107
,
248
250
(
1985
).
3.
K.
Prasad
,
H.
Vaidya
,
K.
Vajravelu
, and
M.
Rashidi
, “
Effects of variable fluid properties on MHD flow and heat transfer over a stretching sheet with variable thickness
,”
J. Mech.
33
,
501
512
(
2017
).
4.
S. U.
Choi
and
J. A.
Eastman
, “
Enhancing thermal conductivity of fluids with nanoparticles
,” Report No. ANL/MSD/CP-84938; CONF-951135-29 (
Argonne National Lab.(ANL)
,
Argonne, IL
,
1995
).
5.
W.
Khan
and
I.
Pop
, “
Boundary-layer flow of a nanofluid past a stretching sheet
,”
Int. J. Heat Mass Transfer
53
,
2477
2483
(
2010
).
6.
O. D.
Makinde
and
A.
Aziz
, “
Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition
,”
Int. J. Therm. Sci.
50
,
1326
1332
(
2011
).
7.
M.
Mustafa
,
T.
Hayat
, and
A.
Alsaedi
, “
Unsteady boundary layer flow of nanofluid past an impulsively stretching sheet
,”
J. Mech.
29
,
423
432
(
2013
).
8.
D.
Pal
and
K.
Vajravelu
, “
Convective-radiation effects on stagnation point flow of nanofluids over a stretching/shrinking surface with viscous dissipation
,”
J. Mech.
30
,
289
297
(
2014
).
9.
N.
Sandeep
,
B. R.
Kumar
, and
M. J.
Kumar
, “
A comparative study of convective heat and mass transfer in non-Newtonian nanofluid flow past a permeable stretching sheet
,”
J. Mol. Liq.
212
,
585
591
(
2015
).
10.
S.
Palani
,
B. R.
Kumar
, and
P. K.
Kameswaran
, “
Unsteady MHD flow of an UCM fluid over a stretching surface with higher order chemical reaction
,”
Ain Shams Eng. J.
7
,
399
408
(
2016
).
11.
J.
Umavathi
and
H. F.
Oztop
, “
Investigation of MHD and applied electric field effects in a conduit cramed with nanofluids
,”
Int. Commun. Heat Mass Transfer
121
,
105097
(
2021
).
12.
J.
Umavathi
, “
Computation of combined electrical and magnetic field effects on dissipative immiscible Newtonian fluid/nanofluid dynamics
,”
J. Magn. Magn. Mater.
573
,
170656
(
2023
).
13.
C.
Wang
, “
The three-dimensional flow due to a stretching flat surface
,”
Phys. Fluids
27
,
1915
1917
(
1984
).
14.
P. D.
Ariel
, “
Generalized three-dimensional flow due to a stretching sheet
,”
ZAMM-J. Appl. Math. Mech.
83
,
844
852
(
2003
).
15.
I.-C.
Liu
and
H. I.
Andersson
, “
Heat transfer over a bidirectional stretching sheet with variable thermal conditions
,”
Int. J. Heat Mass Transfer
51
,
4018
4024
(
2008
).
16.
M.
Awais
,
T.
Hayat
,
A.
Alsaedi
, and
S.
Asghar
, “
Time-dependent three-dimensional boundary layer flow of a Maxwell fluid
,”
Comput. Fluids
91
,
21
27
(
2014
).
17.
R.
Jusoh
,
R.
Nazar
, and
I.
Pop
, “
Three-dimensional flow of a nanofluid over a permeable stretching/shrinking surface with velocity slip: A revised model
,”
Phys. Fluids
30
,
033604
(
2018
).
18.
M.
Muneeshwaran
,
G.
Srinivasan
,
P.
Muthukumar
, and
C.-C.
Wang
, “
Role of hybrid-nanofluid in heat transfer enhancement—A review
,”
Int. Commun. Heat Mass Transfer
125
,
105341
(
2021
).
19.
N.
Iftikhar
,
A.
Rehman
, and
H.
Sadaf
, “
Theoretical investigation for convective heat transfer on Cu/water nanofluid and (SiO2-copper)/water hybrid nanofluid with MHD and nanoparticle shape effects comprising relaxation and contraction phenomenon
,”
Int. Commun. Heat Mass Transfer
120
,
105012
(
2021
).
20.
M.
Benkhedda
,
T.
Boufendi
,
T.
Tayebi
, and
A. J.
Chamkha
, “
Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nanoparticles shapes effect
,”
J. Therm. Anal. Calorim.
140
,
411
425
(
2020
).
21.
N. S.
Khashi'ie
,
N. M.
Arifin
,
M.
Sheremet
, and
I.
Pop
, “
Shape factor effect of radiative Cu–Al2O3/H2O hybrid nanofluid flow towards an EMHD plate
,”
Case Stud. Therm. Eng.
26
,
101199
(
2021
).
22.
S.
Ghadikolaei
and
M.
Gholinia
, “
3D mixed convection MHD flow of GO-MoS2 hybrid nanoparticles in H2O–(CH2OH)2 hybrid base fluid under the effect of H2 bond
,”
Int. Commun. Heat Mass Transfer
110
,
104371
(
2020
).
23.
S.
Ghadikolaei
,
M.
Yassari
,
H.
Sadeghi
,
K.
Hosseinzadeh
, and
D.
Ganji
, “
Investigation on thermophysical properties of Tio2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow
,”
Powder Technol.
322
,
428
438
(
2017
).
24.
G.
Ramesh
, “
Influence of shape factor on hybrid nanomaterial in a cross flow direction with viscous dissipation
,”
Phys. Scr.
94
,
105224
(
2019
).
25.
M.
Shanmugapriya
,
R.
Sundareswaran
,
P. S.
Kumar
, and
G.
Rangasamy
, “
Impact of nanoparticle shape in enhancing heat transfer of magnetized ternary hybrid nanofluid
,”
Sustainable Energy Technol. Assess.
53
,
102700
(
2022
).
26.
I.
Ahmad
,
Q.
Zan-Ul-Abadin
,
M.
Faisal
,
K.
Loganathan
,
T.
Javed
, and
N.
Namgyel
, “
Convective heat transport in bidirectional water driven hybrid nanofluid using blade shaped cadmium telluride and graphite nanoparticles under electromagnetohydrodynamics process
,”
J. Math.
2022
,
4471450
.
27.
I.
Ahmad
,
M.
Faisal
,
Q.
Zan-Ul-Abadin
,
T.
Javed
, and
K.
Loganathan
, “
Unsteady 3D heat transport in hybrid nanofluid containing brick shaped ceria and zinc-oxide nanocomposites with heat source/sink
,”
Nanocomposites
8
,
1
12
(
2022
).
28.
I.
Ahmad
,
Q.
Zan-Ul-Abadin
,
M.
Faisal
,
K.
Loganathan
,
T.
Javed
, and
S.
Gyeltshen
, “
Entropy analysis in bidirectional hybrid nanofluid containing nanospheres with variable thermal activity
,”
J. Nanomater.
2022
,
1915185
.
29.
I.
Ahmad
,
Q.
Zan-Ul-Abadin
,
M.
Faisal
,
K.
Loganathan
,
T.
Javed
, and
D. K.
Chaudhary
, “
Prescribed thermal activity in the radiative bidirectional flow of magnetized hybrid nanofluid: Keller-box approach
,”
J. Nanomater.
2022
,
5531041
.
30.
J.
Umavathi
and
M. B.
Mohite
, “
The onset of convection in a nanofluid saturated porous layer using Darcy model with cross diffusion
,”
Meccanica
49
,
1159
1175
(
2014
).
31.
S.
Marudappa
and
U.
Jawali C
, “
Influence of viscous dissipation on non-Darcy mixed convection flow of nanofluid
,”
Heat Transfer–Asian Res.
46
,
176
199
(
2017
).
32.
J. C.
Umavathi
,
O.
Ojjela
, and
K.
Vajravelu
, “
Numerical analysis of natural convective flow and heat transfer of nanofluids in a vertical rectangular duct using Darcy-Forchheimer-Brinkman model
,”
Int. J. Therm. Sci.
111
,
511
524
(
2017
).
33.
J.
Umavathi
and
O. A.
Bég
, “
Modeling the onset of thermosolutal convective instability in a non-Newtonian nanofluid-saturated porous medium layer
,”
Chin. J. Phys.
68
,
147
167
(
2020
).
34.
P.
Pattnaik
,
S.
Mishra
,
O. A.
Bég
,
U. F.
Khan
, and
J.
Umavathi
, “
Axisymmetric radiative titanium dioxide magnetic nanofluid flow on a stretching cylinder with homogeneous/heterogeneous reactions in Darcy-Forchheimer porous media: Intelligent nanocoating simulation
,”
Mater. Sci. Eng.: B
277
,
115589
(
2022
).
35.
C.
Mohana
and
B.
Rushi Kumar
, “
Nanoparticle shape effects on MHD Cu–water nanofluid flow over a stretching sheet with thermal radiation and heat source/sink
,”
Int. J. Mod. Phys. B
2450151
(
2023
).
36.
B.
Ullah
,
B. M.
Fadhl
,
B. M.
Makhdoum
,
K. S.
Nisar
,
H. A.
Wahab
, and
U.
Khan
, “
Heat transfer analysis in Darcy Forchheimer flow of hybrid nanofluid for multiple shape effects over a curved stretching surface
,”
Case Stud. Therm. Eng.
40
,
102538
(
2022
).
37.
H. B.
Mallikarjuna
,
T.
Nirmala
,
R. J.
Punith Gowda
,
R.
Manghat
, and
R. S.
Varun Kumar
, “
Two-dimensional Darcy–Forchheimer flow of a dusty hybrid nanofluid over a stretching sheet with viscous dissipation
,”
Heat Transfer
50
,
3934
3947
(
2021
).
38.
B.
Sharma
and
R.
Gandhi
, “
Combined effects of joule heating and non-uniform heat source/sink on unsteady MHD mixed convective flow over a vertical stretching surface embedded in a Darcy-Forchheimer porous medium
,”
Propul. Power Res.
11
,
276
292
(
2022
).
39.
Z.
Shah
,
L. B.
McCash
,
A.
Dawar
, and
E.
Bonyah
, “
Entropy optimization in Darcy–Forchheimer MHD flow of water based copper and silver nanofluids with joule heating and viscous dissipation effects
,”
AIP Adv.
10
,
065137
(
2020
).
40.
T.
Cebeci
and
P.
Bradshaw
,
Physical and Computational Aspects of Convective Heat Transfer
(
Springer Science & Business Media
,
2012
).
41.
M.
Sohail
,
Y.-M.
Chu
,
E. R.
El-Zahar
,
U.
Nazir
, and
T.
Naseem
, “
Contribution of joule heating and viscous dissipation on three dimensional flow of Casson model comprising temperature dependent conductance utilizing shooting method
,”
Phys. Scr.
96
,
085208
(
2021
).
42.
T.
Muhammad
,
A.
Alsaedi
,
T.
Hayat
, and
S. A.
Shehzad
, “
A revised model for Darcy-Forchheimer three-dimensional flow of nanofluid subject to convective boundary condition
,”
Results Phys.
7
,
2791
2797
(
2017
).
43.
W.
Jamshed
and
A.
Aziz
, “
A comparative entropy based analysis of cu and Fe3O4/methanol Powell-Eyring nanofluid in solar thermal collectors subjected to thermal radiation, variable thermal conductivity and impact of different nanoparticles shape
,”
Results physics
9
,
195
205
(
2018
).
44.
I.
Zahmatkesh
,
M.
Sheremet
,
L.
Yang
,
S. Z.
Heris
,
M.
Sharifpur
,
J. P.
Meyer
,
M.
Ghalambaz
,
S.
Wongwises
,
D.
Jing
, and
O.
Mahian
, “
Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: A critical review
,”
J. Mol. Liquids
321
,
114430
(
2021
).
45.
F.
Mabood
,
G.
Ashwinkumar
, and
N.
Sandeep
, “
Effect of nonlinear radiation on 3D unsteady MHD stagnancy flow of Fe3O4/graphene–water hybrid nanofluid
,”
Int. J. Ambient Energy
43
,
3385
3395
(
2022
).
46.
S.
Saleem
,
M.
Qasim
,
A.
Alderremy
, and
S.
Noreen
, “
Heat transfer enhancement using different shapes of Cu nanoparticles in the flow of water based nanofluid
,”
Phys. Scr.
95
,
055209
(
2020
).
You do not currently have access to this content.