The present investigation explores the Darcy–Forchheimer unsteady hybrid nanofluid flow over a bidirectionally stretching sheet, with particular emphasis on convective heat transfer. The main focus of this study is to investigate the heat transfer and flow characteristics of sphere, brick, and blade-shaped cadmium telluride and graphite nanoparticle suspensions in water with viscous dissipation and Joule heating effects. The methodology involves the conversion of governing partial differential equations into ordinary differential equations (ODEs) through similarity variables. An implicit Keller Box numerical technique is used to solve the resulting ODEs. Porosity and inertia coefficients reduce the velocity, but the reverse trend is observed for the temperature profiles. Eckert and Biot numbers enhance the temperature of the fluid. The variation in the nanoparticle volume fraction ranges from 2% to 10%. For 10% nanoparticle volume fraction, CdTe/H2O, C/H2O mono-nanofluids achieve 25.71% and 30.76% heat transfer rate, respectively. However, for 10% of the nanoparticle volume fraction, CdTe-C/H2O hybrid nanofluids achieve 28.6%, 34.66%, and 69.07%, and Al2O3-CuO/H2O hybrid nanofluids achieve 31.14%, 38.37%, and 83.21% heat transfer rates for spherical, brick, and blade-shaped nanoparticles. The heat transfer rate of Al2O3-CuO nanoparticles is found to be greater when compared to CdTe-C nanoparticles. In the context of CdTe-C/H2O and Al2O3-CuO/H2O hybrid nanofluids, it has been observed that blade-shaped nanoparticles exhibit heat transfer rates that are 25.55% and 32.41% higher than those achieved with brick-shaped nanoparticles, respectively. Blade-shaped nanoparticles exhibit a greater velocity and heat transport rate in comparison with spherical and brick-shaped nanoparticles.
Skip Nav Destination
Article navigation
September 2023
Research Article|
September 06 2023
Shape effects of Darcy–Forchheimer unsteady three-dimensional CdTe-C/H2O hybrid nanofluid flow over a stretching sheet with convective heat transfer
C. M. Mohana
;
C. M. Mohana
(Investigation, Methodology, Software, Validation, Visualization, Writing – original draft)
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology
, Vellore 632 014, Tamil Nadu, India
Search for other works by this author on:
B. Rushi Kumar
B. Rushi Kumar
a)
(Investigation, Methodology, Software, Supervision, Validation, Writing – review & editing)
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology
, Vellore 632 014, Tamil Nadu, India
a)Author to whom correspondence should be addressed: rushikumar@vit.ac.in
Search for other works by this author on:
a)Author to whom correspondence should be addressed: rushikumar@vit.ac.in
Physics of Fluids 35, 092002 (2023)
Article history
Received:
July 19 2023
Accepted:
August 21 2023
Citation
C. M. Mohana, B. Rushi Kumar; Shape effects of Darcy–Forchheimer unsteady three-dimensional CdTe-C/H2O hybrid nanofluid flow over a stretching sheet with convective heat transfer. Physics of Fluids 1 September 2023; 35 (9): 092002. https://doi.org/10.1063/5.0168503
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00