Nanoparticles (NPs) offer a revolutionary platform in order to achieve targeted delivery for the treatment of cardiovascular diseases. Encapsulation of NPs or nanodrugs by the process of osmosis, inside red blood cells (RBCs), is a new technique in this regard. RBCs loaded with nanodrugs enhance the bio-availability and bio-compatibility. Mathematical model for the analysis of this RBCs loaded with NPs in blood has been developed for a catheterized artery with stenosis. The RBCs loaded with NPs in blood is described as nanofluid. The temperature and velocity of resultant nanofluid have been analyzed. Graphs have been plotted using MATLAB bvp4c for various values of particle radius and membrane thickness. It has been observed that RBCs loaded with NPs concentrate highly at the stenosis thus aid in dissolving it. Also, it has been examined that an optimum NP with a radius of 100 nm is suitable for the purpose. The outcomes shall be useful for the improvement of pharmacokinetics of nanodrugs.

1.
H.
Ye
,
Z.
Shen
,
M.
Wei
, and
Y.
Li
, “
Red blood cell hitchhiking enhances the accumulation of nano- and micro-particles in the constriction of stenosed microvessel
,”
Soft Matter
17
,
40
(
2021
).
2.
D.
Yoon
,
R.
Mishra
, and
D.
You
, “
Study of red blood cells and particles in stenosed microvessels using coupled discrete and continuous forcing immersed boundary methods
,”
Phys. Fluids
35
,
071902
(
2023
).
3.
R.
Carnemolla
,
C. H.
Villa
,
C. F.
Greinder
,
S.
Zaistev
,
K. R.
Patel
,
M. A.
Kowalska
,
D. N.
Atochin
,
D. B.
Cines
,
D. L.
Siegel
, and
C. T.
Esmon
, “
Targeting thrombomodulin to circulating red blood cells augments its protective effects in models of endotoxemia and ischemia‐reperfusion injury
,”
FASEB J.
31
,
761
770
(
2017
).
4.
R.
Wadhwa
,
T.
Aggarwal
,
N.
Thapilya
,
A.
Kumar
,
Priya
,
P.
Yadav
,
V.
Kumari
,
B. S.
Charan Reddy
,
P.
Chandra
, and
P.
Kumar Maurya
, “
Red blood cells as an efficient in vitro model for evaluating the efficacy of metallic nanoparticles
,”
3 Biotech
9
,
279
(
2019
).
5.
B. T.
Luk
,
C.-M.
Jack Hu
,
R. H.
Fang
,
D.
Dehaini
,
C.
Carpenter
,
W.
Gao
, and
L.
Zhang
, “
Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles
,”
Nanoscale
6
,
2730
2737
(
2013
).
6.
S. Q.
Zhang
,
Q.
Fu
,
Y. J.
Zhang
,
J. X.
Pan
,
L.
Zhang
,
Z. R.
Zhang
, and
Z. M.
Liu
, “
Surface loading of nanoparticles on engineered or natural erythrocytes for prolonged circulation time: Strategies and applications
,”
Acta Pharmacol. Sin.
42
,
1040
1054
(
2021
).
7.
C.
Guido
,
G.
Maiorano
,
C.
Gutierrez-Millian
,
B.
Cortese
,
A.
Trapani
,
S.
D'Amone
,
G.
Gigli
, and
I. E.
Palama
, “
Erythrocytes and nanoparticles: New therapeutic systems
,”
Appl. Sci.
11
,
2173
(
2021
).
8.
D. A.
Gilijohann
,
D. S.
Seferos
,
W. L.
Daniel
,
M. D.
Massich
,
P. C.
Patel
, and
C. A.
Mirkin
, “
Gold nanoparticles for biology and medicine
,”
Angew. Chem., Int. Ed.
49
,
3280
3294
(
2010
).
9.
E. C.
Dreaden
,
A. M.
Alkilany
,
X.
Huang
,
C. J.
Murphy
, and
M. A.
El-Sayed
, “
The golden age: Gold nanoparticles for biomedicine
,”
Chem. Soc. Rev.
41
,
2740
2779
(
2012
).
10.
J. G.
Piao
,
L.
Wang
,
F.
Gao
,
Y. Z.
You
,
Y.
Xiong
, and
L.
Yang
, “
Erythrocytes membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy
,”
ACS Nano
8
,
10414
10425
(
2014
).
11.
W.
Gao
,
C. M. J.
Hu
,
R. H.
Wang
,
B. T.
Luk
,
J.
Su
, and
L.
Zhang
, “
Surface functionalization of gold nanoparticles with red blood cell membranes
,”
Adv. Mater.
25
,
3549
3553
(
2013
).
12.
L.
Sarwar
,
A.
Hussain
,
U.
Fernandez-Gamiz
,
S.
Akbar
,
A.
Rehman
, and
E.-S. M.
Sherif
, “
Thermal enhancement and numerical solution of blood nanofluid flow through stenotic artery
,”
Sci. Rep.
12
,
17419
(
2022
).
13.
L.
Qiu
,
N.
Zhu
,
Y.
Feng
,
E. E.
Michaelides
,
G.
Zyla
,
D.
Jing
,
X.
Zhang
,
P. M.
Norris
,
C. N.
Markides
, and
O.
Mahian
, “
A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids
,”
Phys. Rep.
843
,
1
81
(
2020
).
14.
M.
Ajithkumar
,
P.
Lakshminarayana
, and
K.
Vajravelu
, “
Diffusion effects on mixed convective peristaltic flow of a viscous Bingham nanofluid through a porous medium with convective boundary conditions
,”
Phys. Fluids
35
,
032008
(
2023
).
15.
J. C.
Maxwell
,
A Treatise on Electricity and Magnetism
(
Clarendon Press
,
Oxford
,
1873
).
16.
H.
Jiang
,
H.
Li
,
Q.
Xu
, and
L.
Shi
, “
Effective thermal conductivity of nanofluids considering interfacial nano-shells
,”
Mater. Chem. Phys.
148
,
195
200
(
2014
).
17.
A.
Einstein
, “
Eine neue bestimmung der molekuldimensionen
,”
Ann. Phys.
324
,
289
306
(
1906
).
18.
S.
Masoud Hosseini
,
A. R.
Moghadassi
, and
D. E.
Henneke
, “
A new dimensionless group model for determining the viscosity of nanofluids
,”
J. Therm. Anal. Calorim.
100
,
873
877
(
2010
).
19.
M. O.
Omeike
,
K. D.
Aduloju
, and
A. A.
Abdurasid
, “
Convergence of solutions of some second-order nonlinear differential equation
,”
J. Niger. Math. Soc.
41
(
2
),
143
150
(
2022
), see https://ojs.ictp.it/jnms/.
20.
W.
Liu
,
J.
Cui
,
J.
Wang
,
G.
Xia
, and
Z.
Li
, “
Negative thermophoresis of nanoparticles in liquids
,”
Phys. Fluids
35
,
032004
(
2023
).
21.
M. H.
Faruk
,
M.
Ferdows
, and
E. E.
Tzirtzilakis
, “
Hyperthermia temperature reduction in biomagnetic flow: Thermal transfer in Fe3O4–blood particle suspension with uniform and non-uniform effects
,”
Phys. Fluids
35
,
011902
(
2023
).
22.
A.
A
and
S.
Barik
, “
Multiscale analysis of solute dispersion in non-Newtonian flows in a tube with wall absorption
,”
Phys. Fluids
35
,
033103
(
2023
).
23.
A.
Tiwari
and
S.
Deo
, “
Pulsatile flow in a cylindrical tube with porous walls: Applications to blood flow
,”
J. Por. Media
16
(
04
),
335
340
(
2013
).
24.
J.
Brenner
,
S.
Mitragotri
, and
V.
Muzykantov
, “
Red blood cell hitchhiking: A novel approach for vascular delivery of nanocarriers
,”
Annu. Rev. Biomed. Eng.
23
,
225
248
(
2021
).
You do not currently have access to this content.