Two-phase interface fluid, bubble or droplet, has shown broad application potential in oil and gas field development, contaminated soil remediation, and medical treatment. These applications are particularly concerned about the flow characteristics of the two-phase fluid in different channels. Herein, we summarize and analyze the research progress in the flow of bubbles (or droplets) in different channels, mainly including simple, Y-junction/T-junction, and obstructed microchannels. At present, there is no systematic theory about the structure and mechanical evolution of the two-phase interface fluid, and therefore, the comprehensive study is still insufficient. Especially, current studies on the breakup of the two-phase interface in bifurcated channels mainly focus on a few of specific perspectives and a general conclusion is not achieved. In addition, to systematically verify the mechanism of bubble (or droplet) breakup, extensive studies on the three-dimensional physical model of bubbles (or droplets) are needed. Furthermore, we have also sorted out the involved influencing factors, as well as the prediction models for bubble (or droplet) breakup and retention in different channels, and in the end, we provide suggestions for the potential research and development of the two-phase interface fluid.

1.
Z.
Jing
,
C.
Feng
,
S.
Wang
,
D.
Xu
, and
G.
Xu
, “
Effect of foam quality on flow behavior of liquid CO2-based foam fracturing fluid stabilized by hydrofluoroether
,”
J. Pet. Sci. Eng.
159
,
710
(
2017
).
2.
Z.
Jing
,
C.
Feng
,
S.
Wang
, and
D.
Xu
, “
Effects of temperature and pressure on rheology and heat transfer among bubbles in waterless CO2-based foam fracturing fluid
,”
J. Nat. Gas Sci. Eng.
63
,
18
(
2019
).
3.
S.
Tong
,
M.
Gu
,
R.
Singh
, and
K. K.
Mohanty
, “
Proppant transport in foam fracturing fluid during hydraulic fracturing
,”
J. Pet. Sci. Eng.
182
,
106279
(
2019
).
4.
B.
Geraud
,
S. A.
Jones
,
I.
Cantat
,
B.
Dollet
, and
Y.
Meheust
, “
The flow of a foam in a two-dimensional porous medium
,”
Water Resour. Res.
52
,
773
, https://doi.org/10.1002/2015WR017936 (
2016
).
5.
A. J.
Calderon
,
B.
Eshpuniyani
,
J. B.
Fowlkes
, and
J. L.
Bull
, “
A boundary element model of the transport of a semi-infinite bubble through a microvessel bifurcation
,”
Phys. Fluids
22
,
061902
(
2010
).
6.
Y.
Feng
,
D.
Qin
,
J.
Zhang
,
L.
Zhang
,
A.
Bouakaz
, and
M.
Wan
, “
Occlusion and rupture of ex vivo capillary bifurcation due to acoustic droplet vaporization
,”
Appl. Phys. Lett.
112
,
233701
(
2018
).
7.
C.
Chao
,
X.
Jin
,
L.
Teng
,
A. A.
Stokes
, and
X.
Fan
, “
Bubble dislodgment in a capillary network with microscopic multichannels and multibifurcation features
,”
Langmuir
35
,
3194
(
2019
).
8.
X.
Shen
,
L.
Zhao
,
Y.
Ding
,
B.
Liu
,
H.
Zeng
,
L.
Zhong
, and
X.
Li
, “
Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation
,”
J. Hazard. Mater.
186
,
1773
(
2011
).
9.
I.
Bouzid
,
D. P.
Herrera
,
M.
Dierick
,
Y.
Pechaud
,
V.
Langlois
,
P. Y.
Klein
,
J.
Albaric
, and
N.
Fatin-Rouge
, “
A new foam-based method for the (bio)degradation of hydrocarbons in contaminated vadose zone
,”
J. Hazard. Mater.
401
,
123420
(
2021
).
10.
R. N.
Pittman
, “
Oxygen transport and exchange in the microcirculation
,”
Microcirculation
12
,
59
(
2005
).
11.
R. N.
Pittman
, “
Oxygen transport in the microcirculation and its regulation
,”
Microcirculation
20
,
117
(
2013
).
12.
G.
Lajoinie
,
Y.
Luan
,
E.
Gelderblom
,
B.
Dollet
,
F.
Mastik
,
H.
Dewitte
,
I.
Lentacker
,
N.
de Jong
, and
M.
Versluis
, “
Non-spherical oscillations drive the ultrasound-mediated release from targeted microbubbles
,”
Commun. Phys.
1
,
22
(
2018
).
13.
J.
Jeong
,
D.
Jang
,
D.
Kim
,
D.
Lee
, and
S. K.
Chung
, “
Acoustic bubble-based drug manipulation: Carrying, releasing and penetrating for targeted drug delivery using an electromagnetically actuated microrobot
,”
Sens. Actuators A
306
,
111973
(
2020
).
14.
S.
Qiuying
,
Z.
Chong
,
D.
Cong
,
M.
Sheng
,
Z.
Chunying
,
F.
Taotao
, and
M.
Youguang
, “
Dynamics and modelling of bubble formation in asymmetric parallel microchannels
,”
Chem. Eng. Sci.
4
,
100039
(
2019
).
15.
X.
Xiang
,
H.
Wang
,
Q.
Shang
,
C.
Zhu
,
Y.
Ma
, and
T.
Fu
, “
Dynamics of bubble formation in yield stress fluids in parallelized microchannels
,”
Chem. Eng. Sci.
267
,
118317
(
2023
).
16.
H.
Wang
,
S.
Jiang
,
C.
Zhu
,
Y.
Ma
, and
T.
Fu
, “
Bubble formation in T-junctions within parallelized microchannels: Effect of viscoelasticity
,”
Chem. Eng. J.
426
,
131783
(
2021
).
17.
Z.
Zhang
,
Q.
Chang
, and
G.
Chen
, “
Bubble formation process and behavior in Y-type microchannels
,”
Chem. Eng. (China)
49
,
46
(
2021
).
18.
Y. J.
Cui
,
Y. K.
Li
,
K.
Wang
,
J.
Deng
, and
G. S.
Luo
, “
High-throughput preparation of uniform tiny droplets in multiple capillaries embedded stepwise microchannels
,”
J. Flow Chem.
10
,
271
(
2020
).
19.
X.
Nie
,
Z.
Chen
,
C.
Zhu
,
T.
Fu
,
X.
Gao
, and
Y.
Ma
, “
Dynamic of bubble formation in slurry system in T-junction microchannel
,”
CIESC J.
73
,
204
(
2022
).
20.
J.
Liu
,
C.
Zhu
,
H.
Zhou
,
T.
Fu
, and
Y.
Ma
, “
Bubble formation of slurry system and size prediction in microchannel
,”
CIESC J.
71
,
544
(
2020
).
21.
N.
Deming
,
L.
Yaqi
,
Z.
Xiaobin
, and
Q.
Limin
, “
Research on gas bubble merging through the lattice Boltzmann method
,”
J. Comput. Methods Sci. Eng.
16
,
99
(
2016
).
22.
Y.
Lv
,
D.
Nie
, and
J.
Lin
, “
Lattice Boltzmann simulation of gas bubble merging in three dimensions
,”
Chin. J. Comput. Phys.
32
,
553
(
2015
).
23.
A. G.
Petrov
, “
Pulsating gas bubbles in liquid: The conditions of merging
,”
Dokl. Phys.
55
,
528
(
2010
).
24.
M. E.
Steinke
and
S. G.
Kandlikar
, “
An experimental investigation of flow boiling characteristics of water in parallel microchannels
,”
J. Heat Transfer
126
,
518
(
2004
).
25.
T.
Fu
,
Y.
Ma
,
D.
Funfschilling
, and
H. Z.
Li
, “
Dynamics of bubble breakup in a microfluidic T-junction divergence
,”
Chem. Eng. Sci.
66
,
4184
(
2011
).
26.
X.
Li
,
X.
Ma
,
X.
Chen
, and
H.
Zhang
, “
Breakup characteristics of bubble moving in T-junction micro-channel
,”
Nanotechnol. Precis. Eng. (China)
13
,
305
(
2015
).
27.
X.
Sun
,
C.
Zhu
,
T.
Fu
,
Y.
Ma
, and
H. Z.
Li
, “
Dynamics of droplet breakup and formation of satellite droplets in a microfluidic T-junction
,”
Chem. Eng. Sci.
188
,
158
(
2018
).
28.
M.
Manga
, “
Dynamics of drops in branched tubes
,”
J. Fluid Mech.
315
,
105
(
1996
).
29.
M. S.
Nagargoje
and
R.
Gupta
, “
Experimental investigations on the bubble dynamics in a symmetric bifurcating channel
,”
Int. J. Multiphase Flow
159
,
104318
(
2023
).
30.
M.
Samie
,
A.
Salari
, and
M. B.
Shafii
, “
Breakup of microdroplets in asymmetric T junctions
,”
Phys. Rev. E
87
,
053003
(
2013
).
31.
B.
Verbruggen
,
T.
Toth
,
Y. T.
Atalay
,
F.
Ceyssens
,
P.
Verboven
,
R.
Puers
,
B.
Nicolai
, and
J.
Lammertyn
, “
Design of a flow-controlled asymmetric droplet splitter using computational fluid dynamics
,”
Microfluid. Nanofluid.
15
,
243
(
2013
).
32.
A. J.
Calderon
,
Y. S.
Heo
,
D.
Huh
,
N.
Futai
,
S.
Takayama
,
J. B.
Fowlkes
, and
J. L.
Bull
, “
Microfluidic model of bubble lodging in microvessel bifurcations
,”
Appl. Phys. Lett.
89
,
244103
(
2006
).
33.
Y.
Han
, “
Study of the hydraulic characteristics of slug flow in the microfluidic Y-shaped junctions of three different cross angles
,”
J. Phys. Conf. Ser. (UK)
2023
,
012001
(
2023
).
34.
Z.
Liu
,
C.
Zhang
,
Y.
Pang
,
W.
Liu
, and
X.
Wang
, “
Dynamics of droplet breakup in unilateral Y-junctions with different angles
,”
J. Ind. Eng. Chem.
112
,
46
(
2022
).
35.
J.
Poornima
and
S.
Vengadesan
, “
Numerical simulation of bubble transport in a bifurcating microchannel: A preliminary study
,”
ASME J. Biomech. Eng.
134
,
081005
(
2012
).
36.
Q.
Lou
,
T.
Li
, and
M.
Yang
, “
Numerical simulation of the bubble dynamics in a bifurcated micro-channel using the lattice Boltzmann method
,”
J. Appl. Phys.
126
,
034301
(
2019
).
37.
A.
Qamar
,
M.
Warnez
,
D. T.
Valassis
,
M. E.
Guetzko
, and
J. L.
Bull
, “
Small-bubble transport and splitting dynamics in a symmetric bifurcation
,”
Comput. Methods Biomech. Biomed. Eng.
20
,
1182
(
2017
).
38.
K.-J.
Chen
,
E.-Y.
Chaung
,
S.-P.
Wey
,
K.-J.
Lin
,
F.
Cheng
,
C.-C.
Lin
,
H.-L.
Liu
,
H.-W.
Tseng
,
C.-P.
Liu
,
M.-C.
Wei
,
C.-M.
Liu
, and
H.-W.
Sung
, “
Hyperthermia-mediated local drug delivery by a bubble-generating liposomal system for tumor-specific chemotherapy
,”
ACS Nano
8
,
5105
(
2014
).
39.
J. L.
Bull
, “
The application of microbubbles for targeted drug delivery
,”
Expert Opin. Drug Delivery
4
,
475
(
2007
).
40.
K.-H.
Chen
,
Y.-B.
Miao
,
C.-Y.
Shang
,
T.-Y.
Huang
,
Y.-T.
Yu
,
C.-N.
Yeh
,
H.-L.
Song
,
C.-T.
Chen
,
F.-L.
Mi
,
K.-J.
Lin
, and
H.-W.
Sung
, “
A bubble bursting-mediated oral drug delivery system that enables concurrent delivery of lipophilic and hydrophilic chemotherapeutics for treating pancreatic tumors in rats
,”
Biomaterials
255
,
120157
(
2020
).
41.
P.
Marmottant
and
S.
Hilgenfeldt
, “
Controlled vesicle deformation and lysis by single oscillating bubbles
,”
Nature
423
,
153
(
2003
).
42.
S.
Kotopoulis
,
M.
Popa
,
M.
Mayoral Safont
,
E.
Murvold
,
R.
Haugse
,
A.
Langer
,
G.
Dimcevski
,
C.
Lam
,
T.
Bjanes
,
O. H.
Gilja
, and
E. M.
Cormack
, “
SonoVue® vs. Sonazoid™ vs. Optison™: Which bubble is best for low-intensity sonoporation of pancreatic ductal adenocarcinoma?
Pharmaceutics
14
,
98
(
2022
).
43.
T.
Peng
,
M.
Zhou
,
S.
Yuan
, and
B.
Jiang
, “
Trapping stable bubbles in hydrophobic microchannel for continuous ultrasonic microparticle manipulation
,”
Sens. Actuators A
331
,
113045
(
2021
).
44.
S. K.
Samal
,
Numerical Study of Taylor Bubble Breakup by Placing Obstacle at T-Junction Bifurcation
(
National Institute of Technology Rourkela
,
2015
).
45.
T.
Sudhakar
,
Taylor Bubble Flow in Microchannel Having an Obstacle
(
National Institute of Technology Rourkela
,
2014
).
46.
M.
Magnini
and
O. K.
Matar
, “
Morphology of long gas bubbles propagating in square capillaries
,”
Int. J. Multiphase Flow
129
,
103353
(
2020
).
47.
M.
Magnini
,
F.
Municchi
,
I.
El Mellas
, and
M.
Icardi
, “
Liquid film distribution around long gas bubbles propagating in rectangular capillaries
,”
Int. J. Multiphase Flow
148
,
103939
(
2022
).
48.
M.
Magnini
,
A.
Ferrari
,
J. R.
Thome
, and
H. A.
Stone
, “
Undulations on the surface of elongated bubbles in confined gas-liquid flows
,”
Phys. Rev. Fluids
2
,
084001
(
2017
).
49.
L.
Rohilla
and
A. K.
Das
, “
Experimental study on the interfacial evolution of Taylor bubble at inception of an annulus
,”
Ind. Eng. Chem. Res.
58
,
2356
(
2019
).
50.
W. P.
Sun
,
C. Y.
Zhu
,
T. T.
Fu
, and
Y. G.
Ma
, “
Deformation and aspect ratio of bubbles continuously rising in shear-thinning fluids
,”
Iran J. Chem. Chem. Eng.-Int. Engl. Ed.
40
,
667
(
2021
).
51.
H.
Chen
,
Q.
Meng
, and
J.
Li
, “
Thin lubrication film around moving bubbles measured in square microchannels
,”
Appl. Phys. Lett.
107
,
141608
(
2015
).
52.
S. G.
Sontti
and
A.
Atta
, “
CFD analysis of Taylor bubble in a co-flow microchannel with Newtonian and non-Newtonian liquid
,”
Ind. Eng. Chem. Res.
56
,
7401
(
2017
).
53.
R. S.
Abiev
and
I. V.
Lavretsov
, “
Hydrodynamics and mass exchange in gas-liquid slug flow in microchannels
,”
Russ. J. Gen. Chem.
82
,
2088
(
2012
).
54.
C.
Yao
,
G.
Chen
, and
Q.
Yuan
, “
Mass transfer characteristics of gas-liquid two-phase flow in microchannels and applications
,”
CIESC J.
70
,
3635
(
2019
).
55.
C.
Yao
,
Y.
Liu
,
S.
Zhao
,
Z.
Dong
, and
G.
Chen
, “
Bubble/droplet formation and mass transfer during gas-liquid-liquid segmented flow with soluble gas in a microchannel
,”
AIChE J.
63
,
1727
(
2017
).
56.
S.
Yang
,
G.
Kong
, and
Z.
Wu
, “
Experimental study of gas-liquid mass transfer in a rectangular microchannel by digital image analysis method
,” ASME Paper No. IMECE2021-69095,
2021
.
57.
G.
Taylor
, “
Dispersion of soluble matter in solvent flowing slowly through a tube
,”
Proc. R. Soc. London Ser. A
219
,
186
(
1953
).
58.
G.
Taylor
, “
Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion
,”
Proc. R. Soc. London Ser. A
225
,
473
(
1954
).
59.
R.
Aris
, “
On the dispersion of a solute in a fluid flowing through a tube
,”
Proc. R. Soc. London Ser. A
235
,
67
(
1956
).
60.
P.
Gupta
and
A.
Gupta
, “
Effect of homogeneous and heterogeneous reactions on the dispersion of a solute in the laminar flow between two plates
,”
Proc. R. Soc. London A
330
,
59
(
1972
).
61.
C. O.
Ng
, “
Dispersion in steady and oscillatory flows through a tube with reversible and irreversible wall reactions
,”
Proc. R Soc. A
462
,
481
(
2006
).
62.
R.
Sankarasubramanian
and
W. N.
Gill
, “
Unsteady convective diffusion with interphase mass-transfer
,”
Proc. R. Soc. London Ser. A
333
,
115
(
1973
).
63.
A.
Mikelic
,
V.
Devigne
, and
C. J.
Van Duijn
, “
Rigorous upscaling of the reactive flow through a pore, under dominant Peclet and Damkohler numbers
,”
SIAM J. Math. Anal.
38
,
1262
(
2006
).
64.
D.
Picchi
and
P.
Poesio
, “
Dispersion of a passive scalar around a Taylor bubble
,”
J. Fluid Mech.
951
,
A22
(
2022
).
65.
F.
Fairbrother
and
A. E.
Stubbs
, “
Studies in electro-endosmosis—Part VI: The ‘bubble-tube’ method of measurement
,”
J. Chem. Soc.
1935
,
527
.
66.
G. I.
Taylor
, “
Deposition of a viscous fluid on the wall of a tube
,”
J. Fluid Mech.
10
,
161
(
1961
).
67.
R.
Marchessault
and
S.
Mason
, “
Flow of entrapped bubbles through a capillary
,”
Ind. Eng. Chem.
52
,
79
(
1960
).
68.
F. P.
Bretherton
, “
The motion of long bubbles in tubes
,”
J. Fluid Mech.
10
,
166
(
1961
).
69.
S.
Irandoust
and
B.
Andersson
, “
Simulation of flow and mass transfer in Taylor flow through a capillary
,”
Comput. Chem. Eng.
13
,
519
(
1989
).
70.
P.
Aussillous
and
D.
Quéré
, “
Quick deposition of a fluid on the wall of a tube
,”
Phys. Fluids
12
,
2367
(
2000
).
71.
J.
Bico
and
D.
Quere
, “
Liquid trains in a tube
,”
Europhys. Lett.
51
,
546
(
2000
).
72.
R.
Grimes
,
C.
King
, and
E.
Walsh
, “
Film thickness for two phase flow in a microchannel
,” ASME Paper No. IMECE2006-15882,
2006
.
73.
Y.
Han
and
N.
Shikazono
, “
Measurement of the liquid film thickness in micro tube slug flow
,”
Int. J. Heat Fluid Flow
30
,
842
(
2009
).
74.
E.
Klaseboer
,
R.
Gupta
, and
R.
Manica
, “
An extended Bretherton model for long Taylor bubbles at moderate capillary numbers
,”
Phys. Fluids
26
,
032107
(
2014
).
75.
D.
Ni
,
F.
Hong
,
P.
Cheng
, and
G.
Chen
, “
Numerical study of liquid-gas and liquid-liquid Taylor flows using a two-phase flow model based on Arbitrary-Lagrangian–Eulerian (ALE) formulation
,”
Int. Commun. Heat Mass Transfer
88
,
37
(
2017
).
76.
A.
Etminan
,
Y. S.
Muzychka
, and
K.
Pope
, “
Film thickness and pressure drop for gas-liquid Taylor flow in microchannels
,”
J. Fluid Flow, Heat Mass Transfer
8
,
60
71
(
2021
).
77.
M.
Habibi Matin
and
S.
Moghaddam
, “
Thin liquid films formation and evaporation mechanisms around elongated bubbles in rectangular cross-section microchannels
,”
Int. J. Heat Mass Transfer
163
,
120474
(
2020
).
78.
S.
Khodaparast
,
O.
Atasi
,
A.
Deblais
,
B.
Scheid
, and
H. A.
Stone
, “
Dewetting of thin liquid films surrounding air bubbles in microchannels
,”
Langmuir
34
,
1363
(
2018
).
79.
Y.
Han
and
N.
Shikazono
, “
Measurement of liquid film thickness in micro square channel
,”
Int. J. Multiphase Flow
35
,
896
(
2009
).
80.
T.
Abadie
,
J.
Aubin
,
D.
Legendre
, and
C.
Xuereb
, “
Hydrodynamics of gas-liquid Taylor flow in rectangular microchannels
,”
Microfluid. Nanofluid.
12
,
355
(
2012
).
81.
D.
Liu
and
S.
Wang
, “
Hydrodynamics of Taylor flow in noncircular capillaries
,”
Chem. Eng. Process.-Process Intensif.
47
,
2098
(
2008
).
82.
A. L.
Hazel
and
M.
Heil
, “
The steady propagation of a semi-infinite bubble into a tube of elliptical or rectangular cross-section
,”
J. Fluid Mech.
470
,
91
(
2002
).
83.
G.
Bartkus
and
V.
Kuznetsov
, “
Application of the laser-induced fluorescence to study local characteristics of a gas-liquid flow in rectangular microchannel
,” in
Proceedings of the 16th International Conference Optical Methods of Flow Investigation, Moscow, Russia, 28 June–2 July
(
IOP Publishing
,
2021
).
84.
C.
Guo
,
M.
Min
,
M.
Ye
, and
C.
Zhao
, “
Study on breakup behavior of bubble in microalgae suspension in T-junction microchannel
,”
J. Eng. Thermophys.
42
,
1293
(
2021
).
85.
W.-T.
Pan
,
L.
Wen
,
S.-S.
Li
, and
Z.-H.
Pan
, “
Numerical study of asymmetric breakup behavior of bubbles in Y-shaped branching microchannels
,”
Acta Phys. Sin.
71
,
024701
(
2022
).
86.
C.-H.
He
,
G.-J.
Liu
, and
Q.
Lou
, “
Behavior of bubble with high density ratio in a microchannel with asymmetric obstacles
,”
Acta Phys. Sin.
70
,
244701
(
2021
).
87.
Z.
Yan
,
S.
Li
,
L.
Li
,
B.
Deng
, and
Z.
Pan
, “
Dynamics and breakup regime of a vapor bubble traveling through a heated T-shaped branching microchannel
,” ASME Paper No. FEDSM2020-20214,
2020
.
88.
S. S.
Li
,
L.
Wen
, and
W.
Wang
, “
Asymmetric breakup of a single droplet through a Y-junction microchannel with non-uniform flow rate
,”
Phys. Fluids
35
,
4
(
2023
).
89.
Y.
Chen
and
Z.
Deng
, “
Hydrodynamics of a droplet passing through a microfluidic T-junction
,”
J. Fluid Mech.
819
,
401
(
2017
).
90.
J.
Li
,
B.
Chen
,
B.
Wu
,
J.
Tian
,
Q.
Chen
, and
X.
Li
, “
Bubbly flows in symmetrical Y-junction microchannels
,”
J. Eng. Thermophys.
43
,
1329
(
2022
).
91.
D. R.
Link
,
S. L.
Anna
,
D. A.
Weitz
, and
H. A.
Stone
, “
Geometrically mediated breakup of drops in microfluidic devices
,”
Phys. Rev. Lett.
92
,
054503
(
2004
).
92.
A. M.
Leshansky
and
L. M.
Pismen
, “
Breakup of drops in a microfluidic T junction
,”
Phys. Fluids
21
,
023303
(
2009
).
93.
Z.
Cong
,
C.
Zhu
,
T.
Fu
, and
Y.
Ma
, “
Dynamics of bubble breakup in a microfluidic Y-bifurcation
,”
Sci. Sin-Chim.
45
,
34
(
2015
).
94.
Z.
Cong
,
C.
Zhu
,
T.
Fu
, and
Y.
Ma
, “
Bubble breakup and distribution in asymmetric Y-bifurcating microchannels
,”
CIESC J.
65
,
93
(
2014
).
95.
J.
Chen
,
S.
Wang
,
H.
Ke
,
S.
Cai
, and
Y.
Zhao
, “
Gas–liquid two-phase flow splitting at microchannel junctions with different branch angles
,”
Chem. Eng. Sci.
104
,
881
(
2013
).
96.
Z.
Xu
,
T.
Fu
,
C.
Zhu
,
S.
Jiang
,
Y.
Ma
,
K.
Wang
, and
G.
Luo
, “
Dynamics of partially obstructed breakup of bubbles in microfluidic Y-junctions
,”
Electrophoresis
40
,
376
(
2019
).
97.
L.
Menetrier-Deremble
and
P.
Tabeling
, “
Droplet breakup in microfluidic junctions of arbitrary angles
,”
Phys. Rev. E
74
,
035303
(
2006
).
98.
D. A.
Hoang
,
C.
Haringa
,
L. M.
Portela
,
M. T.
Kreutzer
,
C. R.
Kleijn
, and
V.
van Steijn
, “
Design and characterization of bubble-splitting distributor for scaled-out multiphase microreactors
,”
Chem. Eng. J.
236
,
545
(
2014
).
99.
S.
Protiere
,
M. Z.
Bazant
,
D. A.
Weitz
, and
H. A.
Stone
, “
Droplet breakup in flow past an obstacle: A capillary instability due to permeability variations
,”
Europhys. Lett.
92
,
54002
(
2010
).
100.
X.
Wang
,
Z.
Liu
, and
Y.
Pang
, “
Droplet breakup in an asymmetric bifurcation with two angled branches
,”
Chem. Eng. Sci.
188
,
11
(
2018
).
101.
X.
Wang
,
Z.
Liu
, and
Y.
Pang
, “
Breakup dynamics of droplets in an asymmetric bifurcation by μPIV and theoretical investigations
,”
Chem. Eng. Sci.
197
,
258
(
2019
).
102.
M.
Belloul
,
W.
Engl
,
A.
Colin
,
P.
Panizza
, and
A.
Ajdari
, “
Competition between local collisions and collective hydrodynamic feedback controls traffic flows in microfluidic networks
,”
Phys. Rev. Lett.
102
,
194502
(
2009
).
103.
X.
Wang
,
C.
Zhu
,
T.
Fu
, and
Y.
Ma
, “
Critical lengths for the transition of bubble breakup in microfluidic T-junctions
,”
Chem. Eng. Sci.
111
,
244
(
2014
).
104.
P.
Garstecki
,
M. J.
Fuerstman
,
H. A.
Stone
, and
G. M.
Whitesides
, “
Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up
,”
Lab Chip
6
,
437
(
2006
).
105.
M.-C.
Jullien
,
M.-J.
Tsang Mui Ching
,
C.
Cohen
,
L.
Menetrier
, and
P.
Tabeling
, “
Droplet breakup in microfluidic T-junctions at small capillary numbers
,”
Phys. Fluids
21
,
072001
(
2009
).
106.
A. E. M.
Mora
, “
Numerical study of the dynamics of a droplet in a T-junction microchannel using OpenFOAM
,”
Chem. Eng. Sci.
196
,
514
(
2019
).
107.
S.
Afkhami
,
A. M.
Leshansky
, and
Y.
Renardy
, “
Numerical investigation of elongated drops in a microfluidic T-junction
,”
Phys. Fluids
23
,
022002
(
2011
).
108.
Y.
Lu
,
T.
Fu
,
C.
Zhu
,
Y.
Ma
, and
H. Z.
Li
, “
Dynamics of bubble breakup at a T junction
,”
Phys. Rev. E
93
,
022802
(
2016
).
109.
Z.
Zhang
,
Y.
Zhang
,
G.
Zhang
, and
M.
Tian
, “
The bubble breakup process and behavior in T-type microchannels
,”
Phys. Fluids
35
,
013319
(
2023
).
110.
D. N.
Adamson
,
D.
Mustafi
,
J. X. J.
Zhang
,
B.
Zheng
, and
R. F.
Ismagilov
, “
Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices
,”
Lab Chip
6
,
1178
(
2006
).
111.
Y.
Fu
,
L.
Bai
,
Y.
Jin
, and
Y.
Cheng
, “
Theoretical analysis and simulation of obstructed breakup of micro-droplet in T-junction under an asymmetric pressure difference
,”
Phys. Fluids
29
,
032003
(
2017
).
112.
M.
Belloul
,
L.
Courbin
, and
P.
Panizza
, “
Droplet traffic regulated by collisions in microfluidic networks
,”
Soft Matter
7
,
9453
(
2011
).
113.
T.
Fu
,
Y.
Ma
, and
H. Z.
Li
, “
Hydrodynamic feedback on bubble breakup at a T-junction within an asymmetric loop
,”
AIChE J.
60
,
1920
(
2014
).
114.
Y.
Wu
,
T.
Fu
,
C.
Zhu
,
Y.
Lu
,
Y.
Ma
, and
H. Z.
Li
, “
Asymmetrical breakup of bubbles at a microfluidic T-junction divergence: Feedback effect of bubble collision
,”
Microfluid. Nanofluid.
13
,
723
(
2012
).
115.
H.
Bruus
,
Theoretical Microfluidics
(
Oxford University Press
,
2007
).
116.
J.
Ratulowski
and
H. C.
Chang
, “
Transport of gas bubbles in capillaries
,”
Phys. Fluids A
1
,
1642
(
1989
).
117.
X.
Wang
,
C.
Zhu
,
T.
Fu
, and
Y.
Ma
, “
Bubble breakup with permanent obstruction in an asymmetric microfluidic T‐junction
,”
AIChE J.
61
,
1081
(
2015
).
118.
X.
Liu
,
C.
Zhang
,
W.
Yu
,
Z.
Deng
, and
Y.
Chen
, “
Bubble breakup in a microfluidic T-junction
,”
Sci. Bull.
61
,
811
(
2016
).
119.
A.
Bedram
,
A. E.
Darabi
,
A.
Moosavi
, and
S. K.
Hannani
, “
Numerical investigation of an efficient method (T-junction with valve) for producing unequal-sized droplets in micro-and nano-fluidic systems
,”
J. Fluids Eng.
137
,
031202
(
2015
).
120.
A.
Bedram
and
A.
Moosavi
, “
Numerical investigation of droplets breakup in a microfluidic T-junction
,”
Appl. Mech. Mater.
110–116
,
3269
(
2011
).
121.
W. L.
Cheng
,
R.
Sadr
,
J.
Dai
, and
A.
Han
, “
Prediction of microdroplet breakup regime in asymmetric T-junction microchannels
,”
Biomed. Microdev.
20
,
72
(
2018
).
122.
S.
Thippavathini
and
M. K.
Moharana
, “
Flow of Taylor bubble in microchannel having an obstacle
,” ASME Paper No. ICNMM2014-21739,
2014
.
123.
C.
Chung
,
M.
Lee
,
K.
Char
,
K. H.
Ahn
, and
S. J.
Lee
, “
Droplet dynamics passing through obstructions in confined microchannel flow
,”
Microfluid. Nanofluid.
9
,
1151
(
2010
).
124.
Y.
Yin
,
C.
Zhu
,
T.
Fu
,
Y.
Ma
,
K.
Wang
, and
G.
Luo
, “
Enhancement effect and mechanism of gas-liquid mass transfer by baffles embedded in the microchannel
,”
Chem. Eng. Sci.
201
,
264
(
2019
).
125.
Q.
Li
,
Z.
Chai
,
B.
Shi
, and
H.
Liang
, “
Deformation and breakup of a liquid droplet past a solid circular cylinder: A lattice Boltzmann study
,”
Phys. Rev. E
90
,
043015
(
2014
).
126.
Q. J.
Kang
,
D. X.
Zhang
, and
S. Y.
Chen
, “
Displacement of a two-dimensional immiscible droplet in a channel
,”
Phys. Fluids
14
,
3203
(
2002
).
127.
C.
Chung
,
K. H.
Ahn
, and
S. J.
Lee
, “
Numerical study on the dynamics of droplet passing through a cylinder obstruction in confined microchannel flow
,”
J. Non-Newtonian Fluid Mech.
162
,
38
(
2009
).
128.
W.
Chen
,
B.
Wu
,
Y.
Yin
,
C.
Zhu
,
T.
Fu
,
X.
Zhang
, and
Y.
Ma
, “
Gas-liquid hydrodynamics with different liquid viscosities in a split-and-recombine microchannel
,”
Chem. Eng. Process.-Process Intensif.
177
,
108988
(
2022
).
129.
W.
Lee
and
G.
Son
, “
Numerical study of obstacle configuration for droplet splitting in a microchannel
,”
Comput. Fluids
84
,
351
(
2013
).
130.
Y.
Ma
,
M.
Zheng
,
M. G.
Bah
, and
J.
Wang
, “
Effects of obstacle lengths on the asymmetric breakup of a droplet in a straight microchannel
,”
Chem. Eng. Sci.
179
,
104
(
2018
).
131.
S.
Ansari
and
D. S.
Nobes
, “
Effect of the pore geometry on the driving pressure across a bubble penetrating a single pore
,”
Fluids
7
,
333
(
2022
).
132.
Y.
Xiao
,
J.
Zheng
,
Y.
He
, and
L.
Wang
, “
Droplet and bubble wetting behaviors: The roles of surface wettability and roughness
,”
Colloids Surf. A
653
,
130008
(
2022
).
133.
A.
Marmur
, “
Contact-angle hysteresis on heterogeneous smooth surfaces: Theoretical comparison of the captive bubble and drop methods
,”
Colloids Surf. A
136
,
209
(
1998
).
134.
F. J. M.
Ruiz-Cabello
,
M. A.
Rodriguez-Valverde
,
A.
Marmur
, and
M. A.
Cabrerizo-Vilchez
, “
Comparison of sessile drop and captive bubble methods on rough homogeneous surfaces: A numerical Study
,”
Langmuir
27
,
9638
(
2011
).
135.
Z. L.
Zhu
,
D. H.
Wang
,
B.
Yang
,
W. Z.
Yin
, and
J. W.
Drelich
, “
Water droplets and air bubbles at magnesite nano-rough surfaces: Analysis of induction time, adhesion and detachment using a dynamic microbalance
,”
Miner. Eng.
155
,
106449
(
2020
).
136.
B.
Zhou
,
C.
Wang
,
X.
Xiao
,
Y. S.
Hui
,
Y.
Cao
, and
W.
Wen
, “
Controllable microdroplet splitting via additional lateral flow and its application in rapid synthesis of multi-scale microspheres
,”
RSC Adv.
5
,
10365
(
2015
).
137.
S.
Kim
and
S. Y.
Lee
, “
Split of two-phase plug flow with elongated bubbles at a microscale branching T-junction
,”
Chem. Eng. Sci.
134
,
119
(
2015
).
138.
L.
Salkin
,
A.
Schmit
,
L.
Courbin
, and
P.
Panizza
, “
Passive breakups of isolated drops and one-dimensional assemblies of drops in microfluidic geometries: Experiments and models
,”
Lab Chip
13
,
3022
(
2013
).
139.
C. J.
Linnartz
,
H. J. M.
Wolff
,
H. F.
Breisig
,
M.
Alders
, and
M.
Wessling
, “
About a membrane with microfluidic porous-wall channels of cylindrical shape for droplet formation
,”
Langmuir
36
,
9935
(
2020
).
140.
A.
Salari
,
J.
Xu
,
M. C.
Kolios
, and
S. S. H.
Tsai
, “
Expansion-mediated breakup of bubbles and droplets in microfluidics
,”
Phys. Rev. Fluids
5
,
013602
(
2020
).
141.
Q.
Li
and
V.
Prigiobbe
, “
Studying the generation of foam in the presence of nanoparticles using a microfluidic system
,”
Chem. Eng. Sci.
215
,
115427
(
2020
).
142.
G. M.
Whitesides
, “
The origins and the future of microfluidics
,”
Nature
442
,
368
(
2006
).
143.
N.
Denkov
,
S.
Tcholakova
, and
N.
Politova-Brinkova
, “
Physicochemical control of foam properties
,”
Curr. Opin. Colloid Interface Sci.
50
,
101376
(
2020
).
144.
X.
Ye
,
T.
Hao
,
Y.
Chen
,
X.
Ma
, and
R.
Jiang
, “
Liquid film transport around Taylor bubble in a microchannel with gas cavities
,”
Chem. Eng. Process.-Process Intensif.
148
,
107828
(
2020
).
145.
V.
Papadopoulou
,
M. X.
Tang
,
C.
Balestra
,
R. J.
Eckersley
, and
T. D.
Karapantsios
, “
Circulatory bubble dynamics: From physical to biological aspects
,”
Adv. Colloid Interface Sci.
206
,
239
(
2014
).
146.
B. L.
Vaughan
, Jr.
and
J. B.
Grotberg
, “
Splitting of a two-dimensional liquid plug at an airway bifurcation
,”
J. Fluid Mech.
793
,
1
20
(
2016
).
147.
A. J.
Calderón
,
J. B.
Fowlkes
, and
J. L.
Bull
, “
Bubble splitting in bifurcating tubes: A model study of cardiovascular gas emboli transport
,”
J. Appl. Physiol.
99
,
479
(
2005
).
148.
Y. C.
Tan
and
A. P.
Lee
, “
Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system
,”
Lab Chip
5
,
1178
(
2005
).
149.
C.-X.
Zhao
,
E.
Miller
,
J. J.
Cooper-White
, and
A. P. J.
Middelberg
, “
Effects of fluid-fluid interfacial elasticity on droplet formation in microfluidic devices
,”
AIChE J.
57
,
1669
(
2011
).
150.
O.
Carrier
,
E.
Dervin
,
D.
Funfschilling
, and
H.-Z.
Li
, “
Formation of satellite droplets in flow-focusing junctions: Volume and neck rupture
,”
Microsyst. Technol.
21
,
499
(
2015
).
151.
Z.
Jing
,
C.
Feng
,
X.
Ma
,
D.
Xu
, and
S.
Wang
, “
Mechanical evolution of bubble structure and interactive migration behaviors of two particles in flowing wet foam
,”
J. Rheol.
66
,
349
(
2022
).
152.
Z.
Jing
and
C.
Feng
, “
Influence mechanisms of several parameters on the interaction between flowing wet foam and settling particle
,”
Int. J. Multiphase Flow
150
,
104015
(
2022
).
You do not currently have access to this content.