The leading-edge vortex (LEV) is well known for its contribution to the high-lift generation in a wide variety of biological organisms, such as flying insects, auto-rotating samaras, and gliding snakes. Based on revolving wings, the temporal–spatial evolution of the LEV, including the fundamental vorticity dynamics and stabilizing mechanisms, is reviewed here, considering the effects of Reynolds number (Re), Rossby number (Ro), and aspect ratio (AR). The literature agrees that the saturation of LEV intensity at the steady state can be predicted by the chord length of travel at the radius of gyration, which falls between 2 and 4 within a large variety of wing geometries and kinematics. In contrast, the lift almost arrives at a constant value by the end of acceleration. These findings indicate distinct mechanisms for the steady-state LEV vorticity and constant lift. For the stabilizing mechanisms of LEV, four existing hypotheses are reviewed, followed by the introduction of a novel vorticity transport-based perspective. Two vortex-tilting-based mechanisms, named planetary vorticity tilting and dual-stage radial-tangential vortex tilting, were recently proposed to expand our understanding of LEV stability. It is concluded that the vorticity transport inside the LEV is strongly correlated with the local Ro as well as Re and AR. This review presents a comprehensive summary of existing work on LEV dynamics, stabilizing mechanisms, and high-lift generation.

1.
A. R.
Jones
and
H.
Babinsky
, “
Unsteady lift generation on rotating wings at low Reynolds numbers
,”
J. Aircr.
47
(
3
),
1013
1021
(
2010
).
2.
J. D.
Eldredge
and
A. R.
Jones
, “
Leading-edge vortices: Mechanics and modeling
,”
Annu. Rev. Fluid Mech.
51
(
1
),
75
104
(
2019
).
3.
E. C.
Polhamus
,
A Concept of the Vortex Lift of Sharp-Edge Delta Wings Based on a Leading Edge Suction Analogy
(
Langley Research Center
,
1966
).
4.
C.
Shih
and
Z.
Ding
, in
34th Aerospace Sciences Meeting and Exhibit
(
American Institute of Aeronautics and Astronautics
,
Reno, NV
,
1996
).
5.
C.
Shih
and
Z.
Ding
, “
Vortex interaction of a delta-wing flowfield
,”
AIAA J.
41
(
2
),
314
316
(
2003
).
6.
T. O.
Yilmaz
and
D.
Rockwell
, “
Flow structure on finite-span wings due to pitch-up motion
,”
J. Fluid Mech.
691
,
518
545
(
2012
).
7.
M.
Bross
and
D.
Rockwell
, “
Three-dimensional flow structure along simultaneously pitching and rotating wings: Effect of pitch rate
,”
Exp. Fluids
56
(
4
),
82
(
2015
).
8.
K.
Hord
and
Y.
Lian
, “
Leading edge vortex circulation development on finite aspect ratio pitch-up wings
,”
AIAA J.
54
(
9
),
2755
2767
(
2016
).
9.
L.
Dong
,
K.-S.
Choi
,
X.
Mao
, and
Y.
Wang
, “
Development and interaction of vortices over a very low aspect-ratio wing under pitch-up motion
,”
J. Fluid Mech.
943
,
A42
(
2022
).
10.
L.
Chen
,
Y.
Zhang
,
C.
Zhou
, and
J.
Wu
, “
Vorticity dynamics of fully developed leading-edge vortices on revolving wings undergoing pitch-up maneuvers
,”
Phys. Fluids
35
(
3
),
031904
(
2023
).
11.
M. H.
Dickinson
and
K. G.
Gotz
, “
Unsteady aerodynamic performance of model wings at low Reynolds numbers
,”
J. Exp. Biol.
174
,
45
64
(
1993
).
12.
K.
Taira
and
T. I. M.
Colonius
, “
Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers
,”
J. Fluid Mech.
623
,
187
207
(
2009
).
13.
K. K.
Chen
,
T.
Colonius
, and
K.
Taira
, “
The leading-edge vortex and quasisteady vortex shedding on an accelerating plate
,”
Phys. Fluids
22
(
3
),
033601
(
2010
).
14.
A. R.
Jones
,
C. W.
Pitt Ford
, and
H.
Babinsky
, “
Three-dimensional effects on sliding and waving wings
,”
J. Aircr.
48
(
2
),
633
644
(
2011
).
15.
M.
Percin
and
B. W.
van Oudheusden
, “
Three-dimensional flow structures and unsteady forces on pitching and surging revolving flat plates
,”
Exp. Fluids
56
(
2
),
47
(
2015
).
16.
F.
Manar
,
P.
Mancini
,
D.
Mayo
, and
A. R.
Jones
, “
Comparison of rotating and translating wings: Force production and vortex characteristics
,”
AIAA J.
54
(
2
),
519
530
(
2016
).
17.
C. P.
Ellington
,
C.
van den Berg
,
A. P.
Willmott
, and
A. L. R.
Thomas
, “
Leading-edge vortices in insect flight
,”
Nature
384
(
6610
),
626
630
(
1996
).
18.
R. B.
Srygley
and
A. L. R.
Thomas
, “
Unconventional lift-generating mechanisms in free-flying butterflies
,”
Nature
420
(
6916
),
660
664
(
2002
).
19.
F. T.
Muijres
,
L. C.
Johansson
,
R.
Barfield
,
M.
Wolf
,
G. R.
Spedding
, and
A.
Hedenstrom
, “
Leading-edge vortex improves lift in slow-flying bats
,”
Science
319
(
5867
),
1250
1253
(
2008
).
20.
D.
Lentink
,
W. B.
Dickson
,
J. L.
van Leeuwen
, and
M. H.
Dickinson
, “
Leading-edge vortices elevate lift of autorotating plant seeds
,”
Science
324
(
5933
),
1438
1440
(
2009
).
21.
J.
Young
,
S. M.
Walker
,
R. J.
Bomphrey
,
G. K.
Taylor
, and
A. L. R.
Thomas
, “
Details of insect wing design and deformation enhance aerodynamic function and flight efficiency
,”
Science
325
(
5947
),
1549
1552
(
2009
).
22.
S. E.
Farisenkov
,
D.
Kolomenskiy
,
P. N.
Petrov
,
T.
Engels
,
N. A.
Lapina
,
F.-O.
Lehmann
,
R.
Onishi
,
H.
Liu
, and
A. A.
Polilov
, “
Novel flight style and light wings boost flight performance of tiny beetles
,”
Nature
602
,
96
100
(
2022
).
23.
S. P.
Sane
, “
The aerodynamics of insect flight
,”
J. Exp. Biol.
206
(
23
),
4191
4208
(
2003
).
24.
M.
Sun
, “
Insect flight dynamics: Stability and control
,”
Rev. Mod. Phys.
86
(
2
),
615
646
(
2014
).
25.
D. D.
Chin
and
D.
Lentink
, “
Flapping wing aerodynamics: From insects to vertebrates
,”
J. Exp. Biol.
219
(
7
),
920
932
(
2016
).
26.
H.
Liu
,
C. P.
Ellington
,
K.
Kawachi
et al, “
A computational fluid dynamic study of hawkmoth hovering
,”
J. Exp. Biol.
201
(
4
),
461
477
(
1998
).
27.
J. H.
Wu
and
M.
Sun
, “
Unsteady aerodynamic forces of a flapping wing
,”
J. Exp. Biol.
207
(
7
),
1137
1150
(
2004
).
28.
H.
Aono
,
F.
Liang
, and
H.
Liu
, “
Near- and far-field aerodynamics in insect hovering flight: An integrated computational study
,”
J. Exp. Biol.
211
,
239
257
(
2008
).
29.
N.
Phillips
,
K.
Knowles
, and
R. J.
Bomphrey
, “
The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing
,”
Bioinspiration Biomimetics
10
(
5
),
056020
(
2015
).
30.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
(
1
),
69
94
(
1995
).
31.
L.
Chen
,
J.
Wu
, and
B.
Cheng
, “
Leading-edge vortex formation and transient lift generation on a revolving wing at low Reynolds number
,”
Aerosp. Sci. Technol.
97
,
105589
(
2020
).
32.
G.
Luo
and
M.
Sun
, “
The effects of corrugation and wing planform on the aerodynamic force production of sweeping model insect wings
,”
Acta Mech. Sin.
21
(
6
),
531
541
(
2005
).
33.
Y.
Lu
,
G. X.
Shen
, and
G. J.
Lai
, “
Dual leading-edge vortices on flapping wings
,”
J. Exp. Biol.
209
(
24
),
5005
5016
(
2006
).
34.
W.
Shyy
and
H.
Liu
, “
Flapping wings and aerodynamic lift: The role of leading-edge vortices
,”
AIAA J.
45
(
12
),
2817
2819
(
2007
).
35.
D.
Lentink
and
M. H.
Dickinson
, “
Biofluiddynamic scaling of flapping, spinning and translating fins and wings
,”
J. Exp. Biol.
212
(
16
),
2691
2704
(
2009
).
36.
D.
Lentink
and
M. H.
Dickinson
, “
Rotational accelerations stabilize leading edge vortices on revolving fly wings
,”
J. Exp. Biol.
212
(
16
),
2705
2719
(
2009
).
37.
D.
Kim
and
M.
Gharib
, “
Experimental study of three-dimensional vortex structures in translating and rotating plates
,”
Exp. Fluids
49
(
1
),
329
339
(
2010
).
38.
Z. R.
Carr
,
C.
Chen
, and
M. J.
Ringuette
, “
Finite-span rotating wings: Three-dimensional vortex formation and variations with aspect ratio
,”
Exp. Fluids
54
(
2
),
1444
(
2013
).
39.
R. R.
Harbig
,
J.
Sheridan
, and
M. C.
Thompson
, “
Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms
,”
J. Fluid Mech.
717
,
166
192
(
2013
).
40.
R. R.
Harbig
,
J.
Sheridan
, and
M. C.
Thompson
, “
The role of advance ratio and aspect ratio in determining leading-edge vortex stability for flapping flight
,”
J. Fluid Mech.
751
,
71
105
(
2014
).
41.
D. J.
Garmann
and
M. R.
Visbal
, “
Dynamics of revolving wings for various aspect ratios
,”
J. Fluid Mech.
748
,
932
956
(
2014
).
42.
C. J.
Wojcik
and
J. H. J.
Buchholz
, “
Parameter variation and the leading-edge vortex of a rotating flat plate
,”
AIAA J.
52
(
2
),
348
357
(
2014
).
43.
M.
Wolfinger
and
D.
Rockwell
, “
Flow structure on a rotating wing: Effect of radius of gyration
,”
J. Fluid Mech.
755
,
83
110
(
2014
).
44.
M.
Wolfinger
and
D.
Rockwell
, “
Transformation of flow structure on a rotating wing due to variation of radius of gyration
,”
Exp. Fluids
56
(
7
),
137
(
2015
).
45.
Z. R.
Carr
,
A. C.
DeVoria
, and
M. J.
Ringuette
, “
Aspect-ratio effects on rotating wings: Circulation and forces
,”
J. Fluid Mech.
767
,
497
525
(
2015
).
46.
J.-S.
Han
,
J. W.
Chang
, and
H.-K.
Cho
, “
Vortices behavior depending on the aspect ratio of an insect-like flapping wing in hover
,”
Exp. Fluids
56
(
9
),
181
(
2015
).
47.
J. W.
Kruyt
,
G. F.
van Heijst
,
D. L.
Altshuler
, and
D.
Lentink
, “
Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio
,”
J. R Soc. Interface
12
(
105
),
20150051
(
2015
).
48.
Y. J.
Lee
,
K. B.
Lua
, and
T. T.
Lim
, “
Aspect ratio effects on revolving wings with Rossby number consideration
,”
Bioinspiration Biomimetics
11
(
5
),
056013
(
2016
).
49.
J.
Fu
,
W.
Shyy
, and
H.
Qiu
, “
Effects of aspect ratio on vortex dynamics of a rotating wing
,”
AIAA J.
55
(
12
),
4074
4082
(
2017
).
50.
T.
Jardin
and
L.
David
, “
Root cutout effects on the aerodynamics of a low-aspect-ratio revolving wing
,”
AIAA J.
55
(
8
),
2717
2726
(
2017
).
51.
N.
Phillips
,
K.
Knowles
, and
R. J.
Bomphrey
, “
Petiolate wings: Effects on the leading-edge vortex in flapping flight
,”
Interface Focus
7
(
1
),
20160084
(
2017
).
52.
D.
Tudball Smith
,
D.
Rockwell
,
J.
Sheridan
, and
M.
Thompson
, “
Effect of radius of gyration on a wing rotating at low Reynolds number: A computational study
,”
Phys. Rev. Fluids
2
(
6
),
064701
(
2017
).
53.
S. S.
Bhat
,
J.
Zhao
,
J.
Sheridan
,
K.
Hourigan
, and
M. C.
Thompson
, “
Uncoupling the effects of aspect ratio, Reynolds number and Rossby number on a rotating insect-wing planform
,”
J. Fluid Mech.
859
,
921
948
(
2019
).
54.
T.
Jardin
and
T.
Colonius
, “
On the lift-optimal aspect ratio of a revolving wing at low Reynolds number
,”
J. R. Soc. Interface
15
(
143
),
20170933
(
2018
).
55.
S. S.
Bhat
,
J.
Sheridan
,
K.
Hourigan
, and
M. C.
Thompson
, “
Aspect ratio studies on insect wings
,”
Phys. Fluids
31
(
12
),
121301
(
2019
).
56.
Y. Z.
Lyu
,
H. J.
Zhu
, and
M.
Sun
, “
Aerodynamic forces and vortical structures of a flapping wing at very low Reynolds numbers
,”
Phys. Fluids
31
(
4
),
041901
(
2019
).
57.
L.
Chen
,
L.
Wang
,
C.
Zhou
,
J.
Wu
, and
B.
Cheng
, “
Effects of Reynolds number on leading-edge vortex formation dynamics and stability in revolving wings
,”
J. Fluid Mech.
931
,
A13
(
2022
).
58.
L.
Chen
,
C.
Zhou
,
N. H.
Werner
,
B.
Cheng
, and
J.
Wu
, “
Dual-stage radial–tangential vortex tilting reverses radial vorticity and contributes to leading-edge vortex stability on revolving wings
,”
J. Fluid Mech.
963
,
A29
(
2023
).
59.
Y.
Lu
and
G. X.
Shen
, “
Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing
,”
J. Exp. Biol.
211
(
8
),
1221
1230
(
2008
).
60.
A. R.
Jones
,
A.
Medina
,
H.
Spooner
, and
K.
Mulleners
, “
Characterizing a burst leading-edge vortex on a rotating flat plate wing
,”
Exp. Fluids
57
(
4
),
52
(
2016
).
61.
A.
Medina
and
A. R.
Jones
, “
Leading-edge vortex burst on a low-aspect-ratio rotating flat plate
,”
Phys. Rev. Fluids
1
(
4
),
044501
(
2016
).
62.
D. I.
Greenwell
, “
Simple engineering model for delta-wing vortex breakdown
,”
J. Aircr.
40
(
2
),
402
405
(
2003
).
63.
S. K.
Venkata
and
A. R.
Jones
, “
Leading-edge vortex structure over multiple revolutions of a rotating wing
,”
J. Aircr.
50
(
4
),
1312
1316
(
2013
).
64.
Z.
Asghar
,
N.
Ali
,
R.
Ahmed
,
M.
Waqas
, and
W. A.
Khan
, “
A mathematical framework for peristaltic flow analysis of non-Newtonian Sisko fluid in an undulating porous curved channel with heat and mass transfer effects
,”
Comput. Methods Programs Biomed.
182
,
105040
(
2019
).
65.
H.
Sadaf
,
Z.
Asghar
, and
N.
Iftikhar
, “
Cilia-driven flow analysis of cross fluid model in a horizontal channel
,”
Comput. Part. Mech.
10
(
4
),
943
950
(
2023
).
66.
B.
Kada
,
A. A.
Pasha
,
Z.
Asghar
,
M. W. S.
Khan
,
I. B.
Aris
, and
M. S.
Shaikh
, “
Carreau–Yasuda fluid flow generated via metachronal waves of cilia in a micro-channel
,”
Phys. Fluids
35
(
1
),
013110
(
2023
).
67.
Z.
Asghar
,
M. W. S.
Khan
,
W.
Shatanawi
,
M. A.
Gondal
, and
A.
Ghaffari
, “
An IFDM analysis of low Reynolds number flow generated in a complex wavy curved passage formed by artificial beating cilia
,”
Int. J. Mod. Phys. B
37
(
19
),
2350187
(
2023
).
68.
Z.
Asghar
,
R. A.
Shah
, and
N.
Ali
, “
A numerical framework for modeling the dynamics of micro-organism movement on Carreau-Yasuda layer
,”
Soft Comput.
27
(
13
),
8525
8539
(
2023
).
69.
Z.
Asghar
,
R. A.
Shah
,
W.
Shatanawi
, and
N.
Ali
, “
A theoretical approach to mathematical modeling of sperm swimming in viscoelastic Ellis fluid in a passive canal
,”
Arch. Appl. Mech.
93
(
4
),
1525
1534
(
2023
).
70.
Z.
Asghar
,
A.
Elmoasry
,
W.
Shatanawi
, and
M. A.
Gondal
, “
An exact solution for directional cell movement over Jeffrey slime layer with surface roughness effects
,”
Phys. Fluids
35
(
4
),
041901
(
2023
).
71.
Z.
Asghar
,
R. A.
Shah
,
W.
Shatanawi
, and
N.
Ali
, “
FENE-P fluid flow generated by self-propelling bacteria with slip effects
,”
Comput. Biol. Med.
153
,
106386
(
2023
).
72.
Z.
Asghar
, “
Enhancing motility of micro-swimmers via electric and dynamical interaction effects
,”
Eur. Phys. J. Plus
138
(
4
),
357
(
2023
).
73.
M. H.
Dickinson
,
F. O.
Lehmann
, and
S. P.
Sane
, “
Wing rotation and the aerodynamic basis of insect flight
,”
Science
284
(
5422
),
1954
1960
(
1999
).
74.
J. M.
Birch
and
M. H.
Dickinson
, “
Spanwise flow and the attachment of the leading-edge vortex on insect wings
,”
Nature
412
(
6848
),
729
733
(
2001
).
75.
J. M.
Birch
et al, “
Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers
,”
J. Exp. Biol.
207
(
7
),
1063
1072
(
2004
).
76.
M.
Sun
and
J.
Wu
, “
Large aerodynamic forces on a sweeping wing at low Reynolds number
,”
Acta Mech. Sin.
20
(
1
),
24
31
(
2004
).
77.
C.
Poelma
,
W. B.
Dickson
, and
M. H.
Dickinson
, “
Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing
,”
Exp. Fluids
41
(
2
),
213
225
(
2006
).
78.
S. A.
Ansari
,
N.
Phillips
,
G.
Stabler
,
P. C.
Wilkins
,
R.
Żbikowski
, and
K.
Knowles
, “
Experimental investigation of some aspects of insect-like flapping flight aerodynamics for application to micro air vehicles
,”
Exp. Fluids
46
(
5
),
777
798
(
2009
).
79.
C. A.
Ozen
and
D.
Rockwell
, “
Flow structure on a rotating plate
,”
Exp. Fluids
52
(
1
),
207
223
(
2012
).
80.
T.
Jardin
,
A.
Farcy
, and
L.
David
, “
Three-dimensional effects in hovering flapping flight
,”
J. Fluid Mech.
702
,
102
125
(
2012
).
81.
B.
Cheng
,
S. P.
Sane
,
G.
Barbera
,
D. R.
Troolin
,
T.
Strand
, and
X.
Deng
, “
Three-dimensional flow visualization and vorticity dynamics in revolving wings
,”
Exp. Fluids
54
(
1
),
1423
(
2013
).
82.
D. J.
Garmann
,
M. R.
Visbal
, and
P. D.
Orkwis
, “
Three-dimensional flow structure and aerodynamic loading on a revolving wing
,”
Phys. Fluids
25
(
3
),
034101
(
2013
).
83.
T.
Jardin
and
L.
David
, “
Spanwise gradients in flow speed help stabilize leading-edge vortices on revolving wings
,”
Phys. Rev. E
90
(
1
),
013011
(
2014
).
84.
T.
Jardin
and
L.
David
, “
Coriolis effects enhance lift on revolving wings
,”
Phys. Rev. E
91
(
3
),
031001
(
2015
).
85.
T.
Jardin
, “
Coriolis effect and the attachment of the leading edge vortex
,”
J. Fluid Mech.
820
,
312
340
(
2017
).
86.
L.
Chen
,
J.
Wu
, and
B.
Cheng
, “
Volumetric measurement and vorticity dynamics of leading-edge vortex formation on a revolving wing
,”
Exp. Fluids
60
(
1
),
12
(
2019
).
87.
N. H.
Werner
,
H.
Chung
,
J.
Wang
,
G.
Liu
,
J. M.
Cimbala
,
H.
Dong
, and
B.
Cheng
, “
Radial planetary vorticity tilting in the leading-edge vortex of revolving wings
,”
Phys. Fluids
31
(
4
),
041902
(
2019
).
88.
M.
Bross
,
C. A.
Ozen
, and
D.
Rockwell
, “
Flow structure on a rotating wing: Effect of steady incident flow
,”
Phys. Fluids
25
(
8
),
081901
(
2013
).
89.
L. R.
Smith
,
Y. S.
Jung
,
J. D.
Baeder
, and
A. R.
Jones
, “
The role of rotary motion on vortices in reverse flow
,”
J. Fluid Mech.
880
,
723
742
(
2019
).
90.
K. J.
Wabick
,
K. C.
Johnson
,
R. L.
Berdon
,
B. S.
Thurow
, and
J. H. J.
Buchholz
, “
Transient leading-edge vortex development on a wing rolling in uniform flow
,”
J. Fluid Mech.
957
,
A23
(
2023
).
91.
T.
Jardin
, “
Robustness of the leading edge vortex on rotating wings to unsteady perturbations
,”
Flow, Turbul. Combust.
109
,
27
33
(
2022
).
92.
R. R.
Harbig
,
J.
Sheridan
, and
M. C.
Thompson
, “
Relationship between aerodynamic forces, flow structures and wing camber for rotating insect wing planforms
,”
J. Fluid Mech.
730
,
52
75
(
2013
).
93.
J.-L.
Zhang
,
Jun-Hu
,
Y.
Yu
, and
H.-B.
Xuan
, “
The influence of leading-edge deflection on the stability of the leading-edge vortices
,”
Proc. Inst. Mech. Eng., Part C
234
(
20
),
3992
4008
(
2020
).
94.
P.
Brousseau
,
M.
Benaouicha
, and
S.
Guillou
, “
Investigation on the hydrodynamic load fluctuations through passive flexible leading edge
,”
Phys. Fluids
34
,
107110
(
2022
).
95.
R.
van de Meerendonk
,
M.
Percin
, and
B. W.
van Oudheusden
, “
Three-dimensional flow and load characteristics of flexible revolving wings
,”
Exp. Fluids
59
(
10
),
161
(
2018
).
96.
K.
Jia
,
T.
Scofield
,
M.
Wei
, and
S.
Bhattacharya
, “
Vorticity transfer in a leading-edge vortex due to controlled spanwise bending
,”
Phys. Rev. Fluids
6
(
2
),
024703
(
2021
).
97.
Y.
Shen
and
H.
Tanaka
, “
Experimental analysis of the sweepback angle effect on the thrust generation of a robotic penguin wing
,”
Bioinspiration Biomimetics
18
(
2
),
026007
(
2023
).
98.
Z.
Xiong
and
X.
Liu
, “
Numerical investigation on evolutionary characteristics of the leading-edge vortex induced by flapping caudal fin
,”
Phys. Fluids
31
(
12
),
125117
(
2019
).
99.
R.
Zangeneh
, “
Investigating sweep effects on the stability of leading-edge vortices over finite-aspect ratio pitch-up wings
,”
Phys. Fluids
33
(
10
),
107104
(
2021
).
100.
C.
Wang
,
Y.
Liu
,
D.
Xu
, and
S.
Wang
, “
Aerodynamic performance of a bio-inspired flapping wing with local sweep morphing
,”
Phys. Fluids
34
(
5
),
051903
(
2022
).
101.
D. R.
Adhikari
,
G.
Loubimov
,
M. P.
Kinzel
, and
S.
Bhattacharya
, “
Effect of wing sweep on a perching maneuver
,”
Phys. Rev. Fluids
7
(
4
),
044702
(
2022
).
102.
A. N.
Zurman-Nasution
,
B.
Ganapathisubramani
, and
G. D.
Weymouth
, “
Fin sweep angle does not determine flapping propulsive performance
,”
J. R. Soc. Interface
18
(
178
),
20210174
(
2021
).
103.
C.
Li
,
H.
Dong
, and
B.
Cheng
, “
Tip vortices formation and evolution of rotating wings at low Reynolds numbers
,”
Phys. Fluids
32
(
2
),
021905
(
2020
).
104.
J. O.
Dabiri
and
M.
Gharib
, “
The role of optimal vortex formation in biological fluid transport
,”
Proc. R. Soc. B
272
(
1572
),
1557
1560
(
2005
).
105.
J. O.
Dabiri
, “
Optimal vortex formation as a unifying principle in biological propulsion
,”
Annu. Rev. Fluid Mech.
41
(
1
),
17
33
(
2009
).
106.
E.
Limacher
,
C.
Morton
, and
D.
Wood
, “
On the trajectory of leading-edge vortices under the influence of Coriolis acceleration
,”
J. Fluid Mech.
800
,
R1
(
2016
).
107.
D.
Chen
,
D.
Kolomenskiy
, and
H.
Liu
, “
Closed-form solution for the edge vortex of a revolving plate
,”
J. Fluid Mech.
821
,
200
218
(
2017
).
108.
D.
Chen
,
D.
Kolomenskiy
,
R.
Onishi
, and
H.
Liu
, “
Versatile reduced-order model of leading-edge vortices on rotary wings
,”
Phys. Rev. Fluids
3
(
11
),
114703
(
2018
).
109.
J. G.
Wong
,
G.
Gillespie
, and
D. E.
Rival
, “
Circulation redistribution in leading-edge vortices with spanwise flow
,”
AIAA J.
56
(
10
),
3857
3862
(
2018
).
110.
C.
Giner-Morency
and
J. G.
Wong
, “
A species-transport model for circulation in a leading-edge vortex
,”
Adv. Aerodyn.
4
(
1
),
36
(
2022
).
111.
J. R.
Usherwood
and
C. P.
Ellington
, “
The aerodynamics of revolving wings I. Model hawkmoth wings
,”
J. Exp. Biol.
205
(
11
),
1547
1564
(
2002
).
112.
J. C.
Wu
, “
Theory for aerodynamic force and moment in viscous flows
,”
AIAA J.
19
(
4
),
432
441
(
1981
).
113.
T.
Weis-Fogh
, “
Quick estimates of flight fitness in hovering animals including novel mechanisms for lift production
,”
J. Exp. Biol.
59
,
169
230
(
1973
).
114.
T.
Maxworthy
, “
Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’
,”
J. Fluid Mech.
93
(
1
),
47
63
(
1979
).
115.
T.
Maxworthy
, “
The fluid dynamics of insect flight
,”
Annu. Rev. Fluid Mech.
13
(
1
),
329
350
(
1981
).
116.
M. H.
Dickinson
, “
The effects of wing rotation on unsteady aerodynamic performance at low Reynolds numbers
,”
J. Exp. Biol.
192
,
179
206
(
1994
).
117.
C.
van den Berg
and
C. P.
Ellington
, “
The three–dimensional leading–edge vortex of a ‘hovering’ model hawkmoth
,”
Philos. Trans. R. Soc., B
352
(
1351
),
329
340
(
1997
).
118.
S. L.
Lan
and
M.
Sun
, “
Aerodynamic properties of a wing performing unsteady rotational motions at low Reynolds number
,”
Acta Mech.
149
(
1–4
),
135
147
(
2001
).
119.
S.
Pick
and
F.-O.
Lehmann
, “
Stereoscopic PIV on multiple color-coded light sheets and its application to axial flow in flapping robotic insect wings
,”
Exp. Fluids
47
(
6
),
1009
1023
(
2009
).
120.
A. C.
DeVoria
and
M. J.
Ringuette
, “
Vortex formation and saturation for low-aspect-ratio rotating flat-plate fins
,”
Exp. Fluids
52
(
2
),
441
462
(
2012
).
121.
C. A.
Ozen
and
D.
Rockwell
, “
Three-dimensional vortex structure on a rotating wing
,”
J. Fluid Mech.
707
,
541
550
(
2012
).
122.
J. G.
Wong
,
J.
Kriegseis
, and
D. E.
Rival
, “
An investigation into vortex growth and stabilization for two-dimensional plunging and flapping plates with varying sweep
,”
J. Fluids Struct.
43
,
231
243
(
2013
).
123.
J. G.
Wong
and
D. E.
Rival
, “
Determining the relative stability of leading-edge vortices on nominally two-dimensional flapping profiles
,”
J. Fluid Mech.
766
,
611
625
(
2015
).
124.
B.
Cheng
,
J.
Roll
,
Y.
Liu
,
D. R.
Troolin
, and
X.
Deng
, “
Three-dimensional vortex wake structure of flapping wings in hovering flight
,”
J. R. Soc. Interface
11
(
91
),
20130984
(
2014
).
125.
L.
Dong
,
K.-S.
Choi
, and
X.
Mao
, “
Interplay of the leading-edge vortex and the tip vortex of a low-aspect-ratio thin wing
,”
Exp. Fluids
61
(
9
),
200
(
2020
).
126.
F. O.
Minotti
and
E.
Speranza
, “
Leading-edge vortex stability in insect wings
,”
Phys. Rev. E
71
,
051908
(
2005
).
127.
C. J.
Wojcik
and
J. H. J.
Buchholz
, “
Vorticity transport in the leading-edge vortex on a rotating blade
,”
J. Fluid Mech.
743
,
249
261
(
2014
).
128.
A.
Eslam Panah
and
J. H. J.
Buchholz
, “
Parameter dependence of vortex interactions on a two-dimensional plunging plate
,”
Exp. Fluids
55
(
3
),
1687
(
2014
).
129.
A.
Eslam Panah
,
J. M.
Akkala
, and
J. H. J.
Buchholz
, “
Vorticity transport and the leading-edge vortex of a plunging airfoil
,”
Exp. Fluids
56
(
8
),
160
(
2015
).
130.
N. H.
Werner
,
J.
Wang
,
H.
Dong
,
A. E.
Panah
, and
B.
Cheng
, “
Scaling the vorticity dynamics in the leading-edge vortices of revolving wings with two directional length scales
,”
Phys. Fluids
32
(
12
),
121903
(
2020
).
131.
J. G.
Wong
,
B. P.
laBastide
, and
D. E.
Rival
, “
Flow separation on flapping and rotating profiles with spanwise gradients
,”
Bioinspiration Biomimetics
12
(
2
),
026008
(
2017
).
132.
H. V.
Phan
and
H. C.
Park
, “
Mechanisms of collision recovery in flying beetles and flapping-wing robots
,”
Science
370
,
1214
(
2020
).
133.
D.
Bie
,
D.
Li
,
J.
Xiang
,
H.
Li
,
Z.
Kan
, and
Y.
Sun
, “
Design, aerodynamic analysis and test flight of a bat-inspired tailless flapping wing unmanned aerial vehicle
,”
Aerosp. Sci. Technol.
112
,
106557
(
2021
).
134.
X.
Cheng
and
M.
Sun
, “
Wing-kinematics measurement and aerodynamics in a small insect in hovering flight
,”
Sci. Rep.
6
,
25706
(
2016
).
135.
X. L.
Mou
,
Y. P.
Liu
, and
M.
Sun
, “
Wing motion measurement and aerodynamics of hovering true hoverflies
,”
J. Exp. Biol.
214
(
17
),
2832
2844
(
2011
).
136.
A.
Azuma
,
S.
Azuma
,
I.
Watanabe
, and
T.
Furuta
, “
Flight mechanics of a dragonfly
,”
J. Exp. Biol.
116
,
79
107
(
1985
).
137.
H. V.
Phan
and
H. C.
Park
, “
Wing inertia as a cause of aerodynamically uneconomical flight with high angles of attack in hovering insects
,”
J. Exp. Biol.
221
(
19
),
jeb187369
(
2018
).
You do not currently have access to this content.