In this paper, a new type of combined wind-wave system is proposed, that is, composite bucket foundation-oscillating buoy (CBF-OB) combined device. A three-dimensional numerical wave flume is established by using the renormalization group kε model. The hydrodynamic characteristics around the wave and the combined power generation device are studied. The relationship between wave parameters and wave run-up and wave pressure is analyzed. The absorption efficiency performance of the combined power generation device is evaluated. The results show that in the combined power generation system, the wave run-up and wave pressure at 0°–135° around the CBF are smaller than those in the presence of only CBF, but near 180° the ones are larger than those in the presence of only CBF. In the rear side of the combined power generation system, the smaller the scattering parameters, the more obvious the phenomenon of the second wave peak, and the stronger the nonlinearity of the wave and CBF-OB combined power generation system. The proposed CBF-OB combined power generation device can significantly improve the absorption efficiency of the buoy, which can be increased by about 1.5–4.0 times compared with the absorption efficiency under the action of only the buoy alone. There is an optimal power takeoff parameter, that is, when the damping parameter is 500 N·s/m, to maximize the absorption efficiency of the combined power generation device.

1.
Y.
Cheng
,
L.
Fu
,
S.
Dai
,
M.
Collu
,
L.
Cui
,
Z.
Yuan
, and
A.
Incecik
, “
Experimental and numerical analysis of a hybrid WEC-breakwater system combining an oscillating water column and an oscillating buoy
,”
Renewable Sustainable Energy Rev.
169
,
112909
(
2022
).
2.
H. P.
Nguyen
,
C. M.
Wang
,
Z. Y.
Tay
, and
V. H.
Luong
, “
Wave energy converter and large floating platform integration: A review
,”
Ocean Eng.
213
,
107768
(
2020
).
3.
X.
Wu
,
Y.
Hu
,
Y.
Li
,
J.
Yang
,
L.
Duan
,
T.
Wang
,
T.
Adcock
,
Z.
Jiang
,
Z.
Gao
,
Z.
Lin
,
A.
Borthwick
, and
S.
Liao
, “
Foundations of offshore wind turbines: A review
,”
Renewable Sustainable Energy Rev.
104
,
379
393
(
2019
).
4.
Y.
Zhou
,
D.
Ning
,
W.
Shi
,
L.
Johanning
, and
D.
Liang
, “
Hydrodynamic investigation on an OWC wave energy converter integrated into an offshore wind turbine monopile
,”
Coast. Eng.
162
,
103731
(
2020
).
5.
C.
Perez-Collazo
,
D.
Greaves
, and
G.
Iglesias
, “
Hydrodynamic response of the WEC sub-system of a novel hybrid wind-wave energy converter
,”
Energy Convers. Manage.
171
,
307
325
(
2018
).
6.
T.
Van Riet
, “
Feasibility of ocean energy and offshore wind hybrid solutions
” Master thesis (
TU Delft Library
,
2017
).
7.
W.
Tian
,
Y.
Wang
,
W.
Shi
,
C.
Michailides
,
L.
Wan
, and
M.
Chen
, “
Numerical study of hydrodynamic responses for a combined concept of semisubmersible wind turbine and different layouts of a wave energy converter
,”
Ocean Eng.
272
,
113824
(
2023
).
8.
B.
Zhou
,
J.
Hu
,
P.
Jin
,
K.
Sun
,
Y.
Li
, and
D.
Ning
, “
Power performance and motion response of a floating wind platform and multiple heaving wave energy converters hybrid system
,”
Energy
265
,
126314
(
2023
).
9.
E.
Homayoun
,
S.
Panahi
,
H.
Ghassemi
,
G.
He
, and
P.
Liu
, “
Power absorption of combined wind turbine and wave energy converter mounted on braceless floating platform
,”
Ocean Eng.
266
(
P4
),
113027
(
2022
).
10.
H.
Zhang
,
N.
Zhang
, and
X.
Cao
, “
Conceptualization and dynamic response of an integrated system with a semi-submersible floating wind turbine and two types of wave energy converters
,”
Ocean Eng.
269
,
113517
(
2023
).
11.
Y.
Li
,
M. C.
Ong
,
K.
Wang
,
L.
Li
, and
Z.
Cheng
, “
Power performance and dynamic responses of an integrated system with a semi-submersible wind turbine and four torus-shaped wave energy converters
,”
Ocean Eng.
259
,
111810
(
2022
).
12.
Y.
Wang
,
W.
Shi
,
C.
Michailides
,
L.
Wan
,
H.
Kim
, and
X.
Li
, “
WEC shape effect on the motion response and power performance of a combined wind-wave energy converter
,”
Ocean Eng.
250
,
111038
(
2022
).
13.
J. J.
Lian
,
T. S.
Yu
, and
J. F.
Zhang
, “
Wave force on composite bucket foundation of an offshore wind turbine
,”
J. Hydrodyn.
28
(
1
),
33
42
(
2016
).
14.
Z.
Zhang
,
T.
Yu
, and
Z.
Zhao
, “
Wave run-up on composite bucket foundation due to random waves: Model tests and prediction formulae
,”
Coast. Eng.
177
,
104177
(
2022
).
15.
K.
Gunn
and
C.
Stock-Williams
, “
Quantifying the global wave power resource
,”
Renewable Energy
44
,
296
304
(
2012
).
16.
J.
Cordonnier
,
F.
Gorintin
,
A.
De Cagny
,
A. H.
Clément
, and
A.
Babarit
, “
SEAREV: Case study of the development of a wave energy converter
,”
Renewable Energy
80
,
40
52
(
2015
).
17.
V.
Yakhot
,
S. A.
Orszag
,
S.
Thangam
,
T. B.
Gatski
, and
C. G.
Speziale
, “
Development of turbulence models for shear flows by a double expansion technique
,”
Phys. Fluids A
4
(
7
),
1510
1520
(
1992
).
18.
I. P.
Castro
and
D. D.
Apsley
, “
Flow and dispersion over topography: A comparison between numerical and laboratory data for two-dimensional flows
,”
Atmos. Environ.
31
(
6
),
839
850
(
1997
).
19.
T.
Yu
,
Y.
Tang
,
H.
Shi
, and
S.
Huang
, “
Numerical modelling of wave run-up heights and loads on heaving buoy wave energy converter under the influence of regular waves
,”
Ocean Eng.
225
,
108670
(
2021a
).
20.
T.
Yu
,
X.
Meng
,
T.
Li
,
Q.
Guo
, and
Y.
Li
, “
Numerical simulation of interaction between wave-driven currents and revetment on coral reefs
,”
Ocean Eng.
254
,
111346
(
2022
).
21.
H.
Song
,
T.
Yu
,
D.
Yu
, and
Z.
Zhao
, “
Hydrodynamic behaviour of composite bucket foundation with random waves
,”
Ocean Eng.
281
,
114774
(
2023
).
22.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
(
1
),
201
225
(
1981
).
23.
A. D. O.
Falcão
, “
Wave energy utilization: A review of the technologies
,”
Renewable Sustainable Energy Rev.
14
(
3
),
899
918
(
2010
).
24.
P.
Sun
,
S.
Hu
,
H.
He
,
S.
Zheng
,
H.
Chen
,
S.
Yang
, and
Z.
Ji
, “
Structural optimization on the oscillating-array-buoys for energy-capturing enhancement of a novel floating wave energy converter system
,”
Energy Convers. Manage.
228
,
113693
(
2021
).
25.
H.
Shi
,
S.
Huang
, and
F.
Cao
, “
Hydrodynamic performance and power absorption of a multi-freedom buoy wave energy device
,”
Ocean Eng.
172
,
541
549
(
2019
).
26.
Y.
Han
,
J. M.
Zhan
,
W.
Su
,
Y. S.
Li
, and
Q.
Zhou
, “
Comparison of flow fields induced by fixed and oscillatory vertical cylinders in regular waves using 3D numerical model
,”
Ocean Eng.
106
,
238
251
(
2015
).
27.
T.
Yu
,
Z.
Zhao
,
Z.
Shi
, and
Y.
Xu
, “
Experimental investigation of wave load and run-up on the composite bucket foundation influenced by regular waves
,”
J. Ocean Univ. China
20
(
2
),
271
284
(
2021
).
28.
D. G.
Danmeier
,
R. K. M.
Seah
,
T.
Finnigan
,
D.
Roddier
,
A.
Aubault
,
M.
Vache
, and
J. T.
Imamura
, “
Validation of wave run-up calculation methods for a gravity based structure
,” in
Proceedings of International Conference on Offshore Mechanics and Arctic Engineering
(
ASME
,
2008
), Vol.
6
, pp.
265
274
.
29.
M.
Mohseni
,
P. T.
Esperanca
, and
S. H.
Sphaier
, “
Numerical study of wave run-up on a fixed and vertical surface-piercing cylinder subjected to regular, non-breaking waves using OpenFOAM
,”
Appl. Ocean Res.
79
,
228
252
(
2018
).
30.
H.
Ding
,
B.
Huang
,
L.
Cheng
,
K.
Li
, and
Q.
Ren
, “
Wave forces and wave run-up on a truncated rectangular column based on the hydrodynamic experiment
,”
Ocean Eng.
246
,
110607
(
2022
).
31.
M. T.
Morris-Thomas
and
K. P.
Thiagarajan
, “
The run-up on a cylinder in progressive surface gravity waves: Harmonic components
,”
Appl. Ocean Res.
26
(
3–4
),
98
113
(
2004
).
32.
K. P.
Thiagarajan
and
N.
Repalle
, “
Wave run-up on columns of deepwater platforms
,”
Proc. Inst. Mech. Eng., Part M
227
(
3
),
256
265
(
2013
).
33.
J.
Liu
,
L.
Xiao
,
L.
Yang
,
J.
Li
, and
Y.
Kou
, “
Benchmark experimental study on wave run-ups of fixed four-rounded-square-column array in regular waves
,”
J. Ocean Eng. Sci.
7
(
5
),
419
430
(
2022
).
34.
Y.
Gao
,
J.
Zhu
,
X.
Qu
,
L.
Wang
, and
B.
Wang
, “
Numerical simulation of wave run-up on three cylinders in an equilateral-triangular arrangement
,”
Ocean Eng.
233
,
109176
(
2021
).
35.
Y. H.
Lin
,
J. F.
Chen
, and
P. Y.
Lu
, “
A CFD model for simulating wave run-ups and wave loads in case of different wind turbine foundations influenced by nonlinear waves
,”
Ocean Eng.
129
,
428
440
(
2017
).
36.
L.
Martinelli
,
B.
Zanuttigh
, and
J. P.
Kofoed
, “
Selection of design power of wave energy converters based on wave basin experiments
,”
Renewable Energy
36
(
11
),
3124
3132
(
2011
).
37.
W.
Sheng
,
R.
Alcorn
, and
T.
Lewis
, “
Physical modelling of wave energy converters
,”
Ocean Eng.
84
,
29
36
(
2014
).
You do not currently have access to this content.