This paper describes the numerical simulation of the solitary wave impact on a partially immersed and fixed structure located over a flat coastal slope. This topic is related to the need for assessment of the possible impact of long waves, such as tsunamis, on partially immersed structures in coastal waters. Numerical algorithms on a movable grid adapting to the motion of the shore point are developed for a fully nonlinear dispersive model and a dispersionless shallow water model. Their validation is carried out by comparing the obtained solutions with the data from laboratory experiments and with the results obtained using a fully nonlinear potential flow model. The study shows that the difference between the maximum wave impact on the body at the foot of the slope and near the shore can be up to 6 times. In many cases, the maximum horizontal component of the wave force occurs under the influence of the wave reflected from the shore, indicating the need to consider the influence of the shore-reflected wave when assessing the impact of long waves on structures located in coastal waters. Furthermore, the need to use runup algorithms instead of reflective boundary conditions (vertical wall) has been identified for gentler slopes, where the differences in the wave impact for these two configurations can be 2–3 times.

1.
G.
Clauss
,
M.
Dudek
, and
D.
Testa
, “
Gap effects at side-by-side LNG-transfer operations
,” in
ASME 2013 Proceedings of the 32nd International Conference on Ocean, Offshore and Arctic Engineering, 1: Offshore Technology
(
ASME
,
2013
).
2.
Q.
Fang
and
A.
Guo
, “
Analytical and experimental study of focused wave action on a partially immersed box
,”
Math. Probl. Eng.
2019
,
9850302
.
3.
Y.-H.
Chen
and
K.-H.
Wang
, “
Experiments and computations of solitary wave interaction with fixed, partially submerged, vertical cylinders
,”
J. Ocean Eng. Mar. Energy
5
,
189
204
(
2019
).
4.
X.
Lu
and
K.-H.
Wang
, “
Modeling a solitary wave interaction with a fixed floating body using an integrated analytical-numerical approach
,”
Ocean Eng.
109
,
691
704
(
2015
).
5.
C.-H.
Chang
, “
Study of a solitary wave interacting with a surface piercing square cylinder using a three-dimensional fully nonlinear model with grid-refinement technique on surface layers
,”
J. Mar. Eng. Technol.
16
,
22
36
(
2017
).
6.
C.-H.
Chang
,
K.-H.
Wang
, and
P.-C.
Hsieh
, “
Fully nonlinear model for simulating solitary waves propagating through a partially immersed rectangular structure
,”
J. Coastal Res.
336
,
1487
1497
(
2017
).
7.
A. P.
Engsig-Karup
,
C.
Monteserin
, and
C.
Eskilsson
, “
A mixed Eulerian–Lagrangian spectral element method for nonlinear wave interaction with fixed structures
,”
Water Waves
1
,
315
342
(
2019
).
8.
O. I.
Gusev
,
G. S.
Khakimzyanov
, and
L. B.
Chubarov
, “
Numerical investigation of the wave force on a partially immersed rectangular structure: Long waves over a flat bottom
,”
Ocean Eng.
221
,
108540
(
2021
).
9.
M. D.
Orzech
,
F.
Shi
,
J.
Veeramony
,
S.
Bateman
,
J.
Calantoni
, and
J. T.
Kirby
, “
Incorporating floating surface objects into a fully dispersive surface wave model
,”
Ocean Model.
102
,
14
26
(
2016
).
10.
J.-C.
Park
,
M. H.
Kim
, and
H.
Miyata
, “
Three-dimensional numerical wave tank simulations on fully nonlinear wave-current-body interactions
,”
J. Mar. Sci. Technol.
6
,
70
82
(
2001
).
11.
J. L.
Sun
,
C. Z.
Wang
,
G. X.
Wu
, and
B. C.
Khoo
, “
Fully nonlinear simulations of interactions between solitary waves and structures based on the finite element method
,”
Ocean Eng.
108
,
202
215
(
2015
).
12.
V.
Sundar
,
Ocean Wave Dynamics for Coastal and Marine Structures
, Advanced Series On Ocean Engineering (
World Scientific Publishing Company
,
2021
).
13.
M. W.
Dingemans
,
Water Wave Propagation over Uneven Bottoms
(
World Scientific
,
Singapore
,
1997
).
14.
U.
Kanoglu
and
C. E.
Synolakis
, “
Long wave runup on piecewise linear topographies
,”
J. Fluid Mech.
374
,
1
28
(
1998
).
15.
E.
Pelinovsky
,
B. H.
Choi
,
T.
Talipova
,
S. B.
Wood
, and
D. C.
Kim
, “
Solitary wave transformation on the underwater step: Asymptotic theory and numerical experiments
,”
Appl. Math. Comput.
217
,
1704
1718
(
2010
).
16.
C. E.
Synolakis
,
E. N.
Bernard
,
V. V.
Titov
,
U.
Kânoglu
, and
F. I.
González
, “
Validation and verification of tsunami numerical models
,”
Pure Appl. Geophys.
165
,
2197
2228
(
2008
).
17.
W.
Li
and
M.
Lin
, “
Wave-body interactions for a surface-piercing body in water of finite depth
,”
J. Hydrodyn.
22
,
745
752
(
2010
).
18.
E. Y.
Kamynin
,
V. V.
Maximov
,
I. S.
Nudner
,
K. K.
Semenov
, and
G. S.
Khakimzyanov
, “
Study of interaction of the solitary wave with a partially submerged stationary construction
,”
Fundam. Appl. Hydrophys.
4
,
39
54
(
2010
).
19.
I. S.
Nudner
,
K. K.
Semenov
,
G. S.
Khakimzyanov
, and
N. Y.
Shokina
, “
Investigations of the long marine waves interaction with the structures protected by the vertical barriers
,”
Fundam. Appl. Hydrophys.
10
,
31
43
(
2017
) (in Russian).
20.
P.
Lin
, “
A multiple-layer σ-coordinate model for simulation of wave-structure interaction
,”
Comput. Fluids
35
,
147
167
(
2006
).
21.
J.
Gao
,
Z.
He
,
J.
Zang
,
Q.
Chen
,
H.
Ding
, and
G.
Wang
, “
Topographic effects on wave resonance in the narrow gap between fixed box and vertical wall
,”
Ocean Eng.
180
,
97
107
(
2019
).
22.
O. I.
Gusev
,
G. S.
Khakimzyanov
,
V. S.
Skiba
, and
L. B.
Chubarov
, “
Shallow water modeling of wave-structure interaction over irregular bottom
,”
Ocean Eng.
267
,
113284
(
2023
).
23.
O. I.
Gusev
,
V. S.
Skiba
,
G. S.
Khakimzyanov
, and
L. B.
Chubarov
, “
Influence of bottom roughness on the solitary-wave interaction with partially immersed rectangular body
,”
J. Appl. Mech. Tech. Phys.
64
,
50
63
(
2023
).
24.
Y.
Cheng
,
C.
Ji
,
G.
Zhai
, and
G.
Oleg
, “
Fully nonlinear numerical investigation on hydroelastic responses of floating elastic plate over variable depth sea-bottom
,”
Mar. Struct.
55
,
37
61
(
2017
).
25.
A.
Karperaki
,
K.
Belibassakis
, and
T.
Papathanasiou
, “
Time-domain, shallow-water hydroelastic analysis of VLFS elastically connected to the seabed
,”
Mar. Struct.
48
,
33
51
(
2016
).
26.
A. E.
Karperaki
and
K. A.
Belibassakis
, “
Hydroelastic analysis of very large floating structures in variable bathymetry regions by multi-modal expansions and fem
,”
J. Fluids Struct.
102
,
103236
(
2021
).
27.
X.
Liu
,
X.
Wang
, and
S.
Xu
, “
A DMM-EMM-RSM hybrid technique on two-dimensional frequency-domain hydroelasticity of floating structures over variable bathymetry
,”
Ocean Eng.
201
,
107135
(
2020
).
28.
K. M.
Praveen
and
D.
Karmakar
, “
Wave transformation due to floating thick elastic plate over multiple stepped bottom topography
,”
J. Phys.: Conf. Ser.
1276
,
012018
(
2019
).
29.
D.
Bresch
,
D.
Lannes
, and
G.
Metivier
, “
Waves interacting with a partially immersed obstacle in the Boussinesq regime
,”
Anal. PDE
14
,
1085
1124
(
2021
).
30.
D.
Lannes
, “
On the dynamics of floating structures
,”
Ann. PDE
3
,
11
(
2017
).
31.
D. P.
Rijnsdorp
and
M.
Zijlema
, “
Simulating waves and their interactions with a restrained ship using a non-hydrostatic wave-flow model
,”
Coastal Eng.
114
,
119
136
(
2016
).
32.
U.
Bosi
,
A.
Engsig-Karup
,
C.
Eskilsson
, and
M.
Ricchiuto
, “
A spectral/hp element depth-integrated model for nonlinear wave-body interaction
,”
Comput. Methods Appl. Mech. Eng.
348
,
222
249
(
2019
).
33.
X.
Feng
,
W.
Bai
,
X.
Chen
,
L.
Qian
, and
Z.
Ma
, “
Numerical investigation of viscous effects on the gap resonance between side-by-side barges
,”
Ocean Eng.
145
,
44
58
(
2017
).
34.
W.
Zhao
,
H. A.
Wolgamot
,
P. H.
Taylor
, and
R.
Eatock Taylor
, “
Gap resonance and higher harmonics driven by focused transient wave groups
,”
J. Fluid Mech.
812
,
905
939
(
2017
).
35.
P. A.
Madsen
,
D. R.
Fuhrman
, and
H. A.
Schäffer
, “
On the solitary wave paradigm for tsunamis
,”
J. Geophys. Res.
113
,
C12012
,https://doi.org/10.1029/2008JC004932 (
2008
).
36.
V.
Lima
,
P.
Avilez-Valente
,
M.
Baptista
, and
J.
Miranda
, “
Generation of N-waves in laboratory
,”
Coastal Eng.
148
,
1
18
(
2019
).
37.
A.
Apotsos
,
G.
Gelfenbaum
, and
B.
Jaffe
, “
Time-dependent onshore tsunami response
,”
Coastal Eng.
64
,
73
86
(
2012
).
38.
S.
Chacón-Barrantes
, “
Effectiveness of N-waves for predicting morphological changes due to tsunamis
,”
Appl. Ocean Res.
74
,
217
226
(
2018
).
39.
W.
Cheng
and
R.
Weiss
, “
On sediment extent and runup of tsunami waves
,”
Earth Planet. Sci. Lett.
362
,
305
309
(
2013
).
40.
O. I.
Gusev
,
V. S.
Skiba
, and
G. S.
Khakimzyanov
, “
Force impact of long surface waves on a body semi-immersed in water. I. Influence of the waveform
,”
Comput. Technol.
27
,
33
62
(
2022
).
41.
S. C.
Medeiros
and
S. C.
Hagen
, “
Review of wetting and drying algorithms for numerical tidal flow models
,”
Int. J. Num. Methods Fluids
71
,
473
487
(
2013
).
42.
D.
Dutykh
,
T.
Katsaounis
, and
D.
Mitsotakis
, “
Finite volume schemes for dispersive wave propagation and runup
,”
J. Comput. Phys.
230
,
3035
3061
(
2011
).
43.
J. P.
Pitt
,
C.
Zoppou
, and
S. G.
Roberts
, “
Solving the fully nonlinear weakly dispersive Serre equations for flows over dry beds
,”
Int. J. Num. Methods Fluids
93
,
24
43
(
2021
).
44.
F.
Shi
,
J. T.
Kirby
,
J. C.
Harris
,
J. D.
Geiman
, and
S. T.
Grilli
, “
A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation
,”
Ocean Modell.
43–44
,
36
51
(
2012
).
45.
W.
Huang
and
R. D.
Russell
,
Adaptive Moving Mesh Methods
, Applied Mathematical Sciences (
Springer
,
New York
,
2010
).
46.
H.
Tang
and
T.
Tang
, “
Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws
,”
SIAM J. Numer. Anal.
41
,
487
515
(
2003
).
47.
M.
Zhang
,
W.
Huang
, and
J.
Qiu
, “
A well-balanced positivity-preserving quasi-Lagrange moving mesh DG method for the shallow water equations
,”
Commun. Comput. Phys.
31
,
94
130
(
2022
).
48.
G.
Ma
,
A. A.
Farahani
,
J. T.
Kirby
, and
F.
Shi
, “
Modeling wave-structure interactions by an immersed boundary method in a σ-coordinate model
,”
Ocean Eng.
125
,
238
247
(
2016
).
49.
G.
Khakimzyanov
,
D.
Dutykh
, and
O.
Gusev
, “
Long wave interaction with a partially immersed body. II. Numerical results
,” arXiv:2204.08210 (
2022
).
50.
G.
Khakimzyanov
and
D.
Dutykh
, “
Long wave interaction with a partially immersed body. I. Mathematical models
,”
Commun. Comput. Phys.
27
,
321
378
(
2020
).
51.
G.
Khakimzyanov
,
D.
Dutykh
,
Z.
Fedotova
, and
D.
Mitsotakis
, “
Dispersive shallow water wave modelling. I. Model derivation on a globally flat space
,”
Commun. Comput. Phys.
23
,
1
29
(
2018
).
52.
J. T.
Kirby
,
F.
Shi
,
B.
Tehranirad
,
J. C.
Harris
, and
S. T.
Grilli
, “
Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects
,”
Ocean Modell.
62
,
39
55
(
2013
).
53.
G.
Khakimzyanov
,
D.
Dutykh
, and
O.
Gusev
, “
Dispersive shallow water wave modelling. IV. Numerical simulation on a globally spherical geometry
,”
Commun. Comput. Phys.
23
,
361
407
(
2018
).
54.
O. I.
Gusev
,
G. S.
Khakimzyanov
,
L. B.
Chubarov
, and
D.
Dutykh
, “
Assessing the frequency dispersion influence on the solitary-wave interaction with a constant sloping beach
,”
J. Appl. Mech. Tech. Phys.
62
,
624
632
(
2021
).
55.
Z. I.
Fedotova
and
G. S.
Khakimzyanov
, “
Phase and amplitude characteristics of higher-accuracy nonlinear dispersive models
,”
J. Appl. Mech. Tech. Phys.
64
,
216
229
(
2023
).
56.
S. P.
Bautin
,
S. L.
Deryabin
,
A. F.
Sommer
,
G. S.
Khakimzyanov
, and
N. Y.
Shokina
, “
Use of analytic solutions in the statement of difference boundary conditions on a movable shoreline
,”
Russ. J. Numer. Anal. Math. Modell.
26
,
353
377
(
2011
).
57.
G.
Khakimzyanov
,
D.
Dutykh
,
D.
Mitsotakis
, and
N. Y.
Shokina
, “
Numerical simulation of conservation laws with moving grid nodes: Application to tsunami wave modelling
,”
Geosciences
9
,
197
(
2019
).
58.
G.
Khakimzyanov
,
N. Y.
Shokina
,
D.
Dutykh
, and
D.
Mitsotakis
, “
A new run-up algorithm based on local high-order analytic expansions
,”
J. Comput. Appl. Math.
298
,
82
96
(
2016
).
59.
G.
Khakimzyanov
,
D.
Dutykh
,
O.
Gusev
, and
N. Y.
Shokina
, “
Dispersive shallow water wave modelling. II. Numerical simulation on a globally flat space
,”
Commun. Comput. Phys.
23
,
30
92
(
2018
).
60.
G. S.
Khakimzyanov
,
O. I.
Gusev
,
S. A.
Beizel
,
L. B.
Chubarov
, and
N. Y.
Shokina
, “
Simulation of tsunami waves generated by submarine landslides in the Black Sea
,”
Russ. J. Numer. Anal. Math. Modell.
30
,
227
237
(
2015
).
61.
W.
Huang
,
Y.
Ren
, and
R.
Russell
, “
Moving mesh partial differential equations (MMPDES) based on the equidistribution principle
,”
SIAM J. Numer. Anal.
31
,
709
730
(
1994
).
62.
M.
Brocchini
and
N.
Dodd
, “
Nonlinear shallow water equation modeling for coastal engineering
,”
J. Waterw., Port, Coastal, Ocean Eng.
134
,
104
120
(
2008
).
63.
L.
Chubarov
,
V.
Kikhtenko
,
A.
Lander
,
O.
Gusev
,
S.
Beisel
, and
T.
Pinegina
, “
Technique of local probabilistic tsunami zonation for near-field seismic sources applied to the Bechevinskaya Cove (the Kamchatka Peninsula)
,”
Nat. Hazards
110
,
373
406
(
2022
).
64.
C. E.
Synolakis
, “
The runup of solitary waves
,”
J. Fluid Mech.
185
,
523
545
(
1987
).
You do not currently have access to this content.