The non-ideal behavior of aluminized explosives significantly affects the characteristics of underwater explosion shockwaves, rendering the classical model for underwater explosion shockwaves difficult to apply. In this paper, we analyze the underwater explosion shockwave characteristics of a new generation of aluminized explosives and propose a non-ideal explosive underwater explosion shockwave model incorporating a non-ideal explosive shockwave parameter correction function controlled by the Al/O ratio. First, we conducted underwater explosion tank experiments to obtain four groups of Al/O ratios of shockwave parameters of underwater explosion with aluminized explosives and analyzed the effect of the Al/O ratio on them. Subsequently, we calculated the equation of state of aluminized explosives and established a one-dimensional simulation model of underwater explosion. We verified the reliability of the mesh quality and equation of state using the experimental data. Finally, we used the model to calculate the underwater explosion shockwave parameters of aluminized explosives with Al/O ratios of 0.1–1.3. Based on data analysis, we established a calculation model of the pressure peak and energy flow density of the underwater explosion shockwave of aluminized explosives containing non-ideality correction functions. Our results demonstrate that shockwave pressure peak and energy increase and then decrease with an increase in the Al/O ratio, and the non-ideal behavior of aluminized explosives makes the shockwave energy of underwater explosion more sensitive to the Al/O ratio. The proposed model can better predict the experimental results and can be of high practical value as a general structure for underwater explosion shockwave models of other aluminized or metalized explosives.

1.
R. H.
Cole
,
Underwater Explosion
(
Princeton University Press
,
1948
).
2.
H. L.
Abbot
,
Report upon Experiments and Investigations to Develop a System of Submarine Mines for Defending the Harbors of the United States
(
Printed on the Battalion Press
,
1880
).
3.
G. K.
Hartmann
and
G.
Hill
,
Underwater Explosion Research
(
Department of the Navy, Office of Naval Research
,
1950
).
4.
A. B.
Arons
, “
Underwater explosion shock wave parameters at large distances from the charge
,”
J. Acoust. Soc. Am.
26
(
3
),
343
346
(
1954
).
5.
A.
Marshall
,
Explosives
(
J. and A. Churchill
,
London
,
1917
).
6.
J. F.
Slifko
,
Pressure-Pulse Characteristics of Deep Explosions as Functions of Depth and Range
(
Naval Ordnance Lab
,
White Oak, MD
,
1967
).
7.
G.
Bjarnholt
, “
Suggestions on standards for measurement and data evaluation in the underwater explosion test
,”
Propellants Explos. Pyrotech.
5
(
2–3
),
67
74
(
1980
).
8.
H.
Keil
,
Introduction to Underwater Explosion Research (UERD)
(
Norfolk Naval Ship Yard
,
Portsmouth, VA
,
1956
).
9.
T. L.
Geers
and
K. S.
Hunter
, “
An integrated wave-effects model for an underwater explosion bubble
,”
J. Acoust. Soc. Am.
111
(
4
),
1584
1601
(
2002
).
10.
Y.
Gao
,
S.
Wang
,
J.
Zhang
,
X.
Jia
, and
C.
Liang
, “Effects of underwater explosion depth on shock wave overpressure and energy,”
Phys. Fluids
111
(
11
),
037108
(
2022
).
11.
Z.
Zhao
,
J.
Rong
, and
S.
Zhang
, “
A numerical study of underwater explosions based on the ghost fluid method
,”
Ocean Eng.
247
,
109796
(
2022
).
12.
X.
Jia
,
S.
Wang
,
J.
Xu
,
J.
Zhang
, and
Y.
Gao
, “
Nonlinear characteristics and corrections of near-field underwater explosion shock waves
,”
Phys. Fluids
34
,
046108
(
2022
).
13.
P. R.
Nowak
,
T.
Gajewski
,
P.
Peksa
, and
P. W.
Sielicki
, “
Experimental verification of different analytical approaches for estimating underwater explosives
,”
Int. J. Prot. Struct.
(published online
2022
).
14.
X. Y.
Jia
,
S. S.
Wang
,
C. L.
Feng
,
J. X.
Zhang
, and
F.
Ma
, “
A practical simulation of a hexanitrohexaazaisowurtzitane (CL-20) sphere detonated underwater with the Taylor wave solution and modified Tait parameters
,”
Phys. Fluids
33
(
3
),
036102
(
2021
).
15.
A. A.
Egeln
,
J. C.
Hewson
,
D. R.
Guildenbecher
,
R. T.
Marinis
,
M. C.
Welliver
, and
R. W.
Houim
, “
Post-detonation fireball modeling: Validation of freeze out approximations
,”
Phys. Fluids
35
(
6
),
066117
(
2023
).
16.
P. P.
Vadhe
,
R. B.
Pawar
,
R. K.
Sinha
,
S. N.
Asthana
, and
A.
Subhananda Rao
, “
Cast aluminized explosives (review)
,”
Combust. Explos. Shock Waves
44
(
4
),
461
477
(
2008
).
17.
M. A.
Cook
,
A. S.
Filler
,
R. T.
Keyes
,
W. S.
Partridge
, and
W.
Ursenbach
, “
Aluminized explosives
,”
J. Phys. Chem.
61
(
2
),
189
196
(
1957
).
18.
M. H.
Keshavarz
,
V.
Bagheri
, and
S.
Damiri
, “
A simple method for reliable estimation of the bubble energy in the underwater explosion
,”
Z. Anorg. Allg. Chem.
645
(
24
),
1402
1407
(
2019
).
19.
Q.
Pontalier
,
J.
Loiseau
,
S.
Goroshin
,
F.
Zhang
, and
D. L.
Frost
, “
Blast enhancement from metalized explosives
,”
Shock Waves
31
(
3
),
203
230
(
2021
).
20.
P. J.
Miller
, “A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives,”
MRS Online Proceedings Library (OPL),
418
,
413
(
1995
).
21.
R.
Guiruis
, “
Time-dependent equations of state for aluminized underwater explosives
,” in
Proceedings of the Tenth Symposium (International) on Detonation
(
1993
).
22.
J. W.
Posey
,
B.
Roque
,
S.
Guhathakurta
, and
R. W.
Houim
, “
Mechanisms of prompt and delayed ignition and combustion of explosively dispersed aluminum powder
,”
Phys. Fluids
33
,
113308
(
2021
).
23.
X. X.
Yuan
,
C.
Wu
,
F. J.
An
,
S. S.
Liao
,
M. X.
Zhou
,
Z. Q.
Shi
, and
D. Y.
Xue
, “A non-isentropic model of aluminized explosives involved with the reaction degree of aluminum powder for post-detonation burning behavior,”
Phys. Fluids
32
,
023306
(
2020
).
24.
H. F.
Wang
,
Y.
Liu
,
M. Y.
Liu
,
X.
Li
,
Z. Q.
Shi
,
Y.
Sun
,
C.
Xiao
, and
F. L.
Huang
, “
Study on the quasi-isentropic model for aluminized explosive driving the cylinder in the direction perpendicular to detonation wave propagation
,”
Phys. Fluids
35
(
4
),
046104
(
2023
).
25.
Z.
Xu
,
G.
Dong
, and
Y.
Wang
, “
A study of pulsating behavior and stability parameter for one-dimensional non-ideal detonations
,”
Phys. Fluids
35
,
016101
(
2023
).
26.
D.
Price
, “Aluminized Organic Explosives,” Report No. AD0745725, Naval Ordnance Laboratory,
1972
.
27.
M. M.
Swisdak
, “
Explosion effects and properties. II. Explosion effects in water
,” Report No. NSWCIWOL TR 76-116,
1978
.
28.
N.
Masahiko
and
A.
Aoki
, “
Effects of aluminum on the energy of underwater explosion for the insensitive PBXs
,” Insensitive Munitions of Technology Symposium, 19–21 (
1997
).
29.
T.
Keicher
,
A.
Happ
,
A.
Kretschmer
,
U.
Sirringhaus
, and
R.
Wild
, “
Influence of aluminium/ammonium perchlorate on the performance of underwater explosives
,”
Propellants Explos. Pyrotech.
24
(
3
),
140
143
(
1999
).
30.
A. S.
Kumar
,
V. B.
Rao
,
R. K.
Sinha
, and
A. S.
Rao
, “
Evaluation of plastic bonded explosive (PBX) formulations based on RDX, aluminum, and HTPB for underwater applications
,”
Propellants Explos. Pyrotech.
35
(
4
),
359
364
(
2010
).
31.
L.
Du
,
P.
Nie
,
S.
Jin
,
K.
Chen
, and
J.
Wang
, “
Influences of FOX-7 and NTO on the metal driven ability and underwater explosion power of HMX-based aluminized explosives
,”
Chem. Phys. Lett.
779
,
138881
(
2021
).
32.
D.
Xiang
,
J.
Rong
,
X.
He
, and
Z.
Feng
, “
Underwater explosion performance of RDX/AP-based aluminized explosives
,”
Cent. Eur. J. Energetic Mater.
14
(
1
),
60
76
(
2017
).
33.
D. L.
Xiang
,
J. L.
Rong
, and
J.
Li
, “
Effect of Al/O ratio on the detonation performance and underwater explosion of HMX-based aluminized explosives
,”
Propellants Explos. Pyrotech.
39
(
1
),
65
73
(
2014
).
34.
F.
Xiao
,
W.
Gao
,
J.
Li
, and
R.
Yang
, “
Effect of the aluminum particle size, solid content, and aluminum/oxygen ratio on the underwater explosion performance of aluminum-based explosives
,”
Combust. Explos. Shock Waves
56
(
5
),
576
584
(
2020
).
35.
H.
Hu
,
L.
Chen
,
J.
Yan
,
H.
Feng
,
C.
Xiao
, and
P.
Song
, “
Effect of aluminum powder on underwater explosion performance of CL‐20 based explosives
,”
Propellants Explos. Pyrotech.
44
(
7
),
837
843
(
2019
).
36.
L.
Yao
,
S.
Zhao
,
X.
Jia
,
H.
Wang
, and
C.
Wang
, “
Effect of Al/O ratio on underwater explosion energy characteristics of CL‐20‐based aluminized explosives
,”
Propellants Explos. Pyrotech.
48
(
6
),
e202200123
(
2023
).
37.
Q.
Jiao
,
Q.
Wang
,
J.
Nie
,
X.
Guo
,
W.
Zhang
, and
W.
Fan
, “
The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives
,”
AIP Adv.
8
(
3
),
035013
(
2018
).
38.
Q.
Zhao
,
J.
Nie
,
Q.
Wang
,
Z.
Zhou
, and
Q.
Jiao
, “
Numerical and experimental study on cyclotrimethylenetrinitramine/aluminum explosives in underwater explosions
,”
Adv. Mech. Eng.
8
(
10
),
168781401666790
(
2016
).
39.
Q.
Zhao
,
J.-X.
Nie
,
W.
Zhang
,
Q.-S.
Wang
, and
Q.-J.
Jiao
, “
Effect of the Al/O ratio on the Al reaction of aluminized RDX-based explosives
,”
Chin. Phys. B
26
(
5
),
054502
(
2017
).
40.
R.
Kiciński
and
B.
Szturomski
, “
Pressure wave caused by trinitrotoluene (TNT) underwater explosion—Short review
,”
Appl. Sci.
10
(
10
),
3433
(
2020
).
41.
N. N.
Liu
,
A.
Zhang
,
P.
Cui
,
S. P.
Wang
, and
S.
Li
, “
Interaction of two out-of-phase underwater explosion bubbles
,”
Phys. Fluids
33
,
106103
(
2021
).
42.
M.
Murphy
,
D.
Baum
,
R. L.
Simpson
,
J.
Monoto
,
L.
Montesi
,
K.
Newman
,
D.
Tuerpe
, and
J.
Osborn
, Technical Report No.
UCRL-JC-127575
(
Lawrence Livermore Laboratory
,
1997
).
43.
Y.
Bayat
,
G.
Taheripouya
,
V.
Zeynali
, and
V.
Azizkhani
, “
Methods and strategies to achieve hexanitrohexaazaisowurtzitane (HNIW or CL-20): A comprehensive overview
,”
Energy Mater.
(published online
2023
).
44.
E. L.
Lee
and
H. C.
Hornig
, “
Equation of state of detonation product gases
,”
Symp. Int. Combust.
12
(
1
),
493
499
(
1969
).
45.
J.
Zhang
,
S.
Wang
,
X.
Jia
,
Y.
Gao
, and
F.
Ma
, “
An engineering application of Prosperetti and Lezzi equation to solve underwater explosion bubbles
,”
Phys. Fluids
33
(
1
),
017118
(
2021
).
46.
M.
Suceska
,
H.-G.
Ang
, and
H. Y.
Serene Chan
, “
Study of the effect of covolumes in BKW equation of state on detonation properties of CHNO explosives
,”
Propellants Explos. Pyrotech.
38
(
1
),
103
112
(
2013
).
47.
J. X.
Nie
,
R. Z.
Kan
,
Q. J.
Jiao
,
Q. S.
Wang
, and
X. Y.
Guo
, “Studies on aluminum powder combustion in detonation environment,”
Chin. Phys. B
31
,
044703
(
2022
).
48.
T.
Zhou
,
X.
Li
,
C.
Liu
,
X.
Shi
,
B.
Wu
,
X.
Duan
, and
G.
Yang
, “
Butterfly wing fans the fire: High efficient combustion of CWs/CL-20/AP nanocomposite for light ignited micro thruster using multi-channeled hierarchical porous structure from butterfly wing scales
,”
Combust. Flame
231
,
111505
(
2021
).
49.
Z. Q.
Zhou
,
J. G.
Chen
,
H. Y.
Yuan
, and
J. X.
Nie
, “
Influence of Al content and surrounding medium on the energy output of cyclotrimethylenetrinitramine (RDX)/Al/wax explosives
,”
J. Appl. Phys.
129
(
7
),
074904
(
2021
).
50.
R.
Kan
,
J.
Nie
,
P.
Song
,
Z.
Liu
,
X.
Guo
, and
S.
Yan
, “
Effect of afterburning effect of aluminum powder on shockwave and bubble behavior of CL-20 explosive in deep-water explosion
,”
J. Energy Mater.
(published online
2022
).
51.
R. Z.
Kan
,
J. X.
Nie
,
X. Y.
Guo
,
S.
Yan
, and
Q. J.
Jiao
, “Energy output characteristics of CL-20-based aluminized explosives with different Al/O ratios during deep-water explosion,”
Acta Armamentarii
43
,
1023
1031
(
2022
).
You do not currently have access to this content.