In the present study, we investigate the evolution of turbulent statistics and coherent structures in hypersonic turbulent boundary layers at the Mach number of 5 impinged by oblique shock waves generated by the wedge with the angles of 14 ° , 10 °, and 6 °, inducing strong, mild, and incipient flow separation, by exploiting direct numerical simulation databases, for the purpose of revealing the underlying flow physics that are of significance to turbulent modeling. We found that the large-scale structures are amplified within the interaction zone, manifested in the form of large-scale low- and high-speed streaks with the spanwise length scale of boundary layer thickness, and gradually decay downstream, the process of which is extremely long. The abrupt variation in the characteristic length, time, and velocity scales as well as the incompatible viscous dissipation of the mean and turbulent kinetic energy results in the incorrect predictions by the Reynolds-Averaged Navier–Stokes (RANS) equation simulations, provided the models are established based on solving the transport equations of the turbulent kinetic equation and its viscous dissipation ( k ε or k ω models, for instance). To amend this issue, we propose to refine the parameters in the model as the functions of wall pressure, the flow quantities related to multiple flow features. The RANS simulations with the k ω SST model utilizing the proposed refinement improve greatly the accuracy of the skin friction, wall heat flux, and Reynolds shear stress downstream of the interaction zone, and the wall pressure distributions in hypersonic turbulence over compression ramp, suggesting its promising prospect in engineering applications.

1.
D.
Dolling
, “
Fifty years of shock-wave/boundary-layer interaction research: What next?
,”
AIAA J.
39
,
1517
1531
(
2001
).
2.
D.
Gaitonde
, “
Progress in shock wave/boundary layer interactions
,”
Prog. Aerosp. Sci.
72
,
80
99
(
2015
).
3.
V.
Theofilis
,
S.
Pirozzoli
, and
P.
Martin
, “
Special issue on the fluid mechanics of hypersonic flight
,”
Theor. Comput. Fluid Dyn.
36
,
1
8
(
2022
).
4.
J.
Dussauge
,
P.
Dupont
, and
J.
Debiève
, “
Unsteadiness in shock wave boundary layer interactions with separation
,”
Aerosp. Sci. Technol.
10
,
85
91
(
2006
).
5.
J.
Délery
and
J.
Dussauge
, “
Some physical aspects of shock wave/boundary layer interactions
,”
Shock Waves
19
,
453
468
(
2009
).
6.
H.
Babinsky
and
J.
Harvey
,
Shock Wave-Boundary-Layer Interactions
(
Cambridge University Press
,
2011
), Vol.
32
.
7.
V.
Mikulla
and
C.
Horstman
, “
Turbulence measurements in hypersonic shock-wave boundary-layer interaction flows
,”
AIAA J.
14
,
568
575
(
1976
).
8.
J. M.
Delery
, “
Shock wave/turbulent boundary layer interaction and its control
,”
Prog. Aerosp. Sci.
22
,
209
280
(
1985
).
9.
A.
Smits
and
K.
Muck
, “
Experimental study of three shock wave/turbulent boundary layer interactions
,”
J. Fluid Mech.
182
,
291
314
(
1987
).
10.
G.
Coleman
and
J.
Stollery
, “
Heat transfer from hypersonic turbulent flow at a wedge compression corner
,”
J. Fluid Mech.
56
,
741
752
(
1972
).
11.
M.
Holden
,
T.
Wadhams
,
M.
MacLean
, and
E.
Mundy
, “
Experimental studies of shock wave/turbulent boundary layer interaction in high Reynolds number supersonic and hypersonic flows to evaluate the performance of CFD codes
,” AIAA Paper No. 2010-4468,
2010
.
12.
D.
Knight
,
H.
Yan
,
A.
Panaras
, and
A.
Zheltovodov
, “
Advances in CFD prediction of shock wave turbulent boundary layer interactions
,”
Prog. Aerosp. Sci.
39
,
121
184
(
2003
).
13.
C.
Roy
and
F.
Blottner
, “
Review and assessment of turbulence models for hypersonic flows
,”
Prog. Aerosp. Sci.
42
,
469
530
(
2006
).
14.
A.
Zheltovodov
, “
Some advances in research of shock wave turbulent boundary layer interactions
,” AIAA Paper No. 2006-496,
2006
.
15.
F.
Zuo
,
A.
Memmolo
, and
S.
Pirozzoli
, “
Reynolds-averaged numerical simulations of conical shock-wave/boundary-layer interactions
,”
AIAA J.
59
,
1645
1659
(
2021
).
16.
A.
Singh
and
K.
Duraisamy
, “
Using field inversion to quantify functional errors in turbulence closures
,”
Phys. Fluids
28
,
045110
(
2016
).
17.
D.
Knight
,
O.
Chazot
,
J.
Austin
,
M. A.
Badr
,
G.
Candler
,
B.
Celik
,
D.
de Rosa
,
R.
Donelli
,
J.
Komives
,
A.
Lani
et al, “
Assessment of predictive capabilities for aerodynamic heating in hypersonic flow
,”
Prog. Aerosp. Sci.
90
,
39
53
(
2017
).
18.
C.
Helm
and
M.
Martin
, “
Scaling of hypersonic shock/turbulent boundary layer interactions
,”
Phys. Rev. Fluids
6
,
074607
(
2021
).
19.
S.
Pirozzoli
,
M.
Bernardini
, and
F.
Grasso
, “
Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation
,”
J. Fluid Mech.
657
,
361
393
(
2010
).
20.
S.
Pirozzoli
and
F.
Grasso
, “
Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.25
,”
Phys. Fluids
18
,
065113
(
2006
).
21.
P.
Volpiani
,
M.
Bernardini
, and
J.
Larsson
, “
Effects of a nonadiabatic wall on supersonic shock/boundary-layer interactions
,”
Phys. Rev. Fluids
3
,
083401
(
2018
).
22.
P.
Volpiani
,
M.
Bernardini
, and
J.
Larsson
, “
Effects of a nonadiabatic wall on hypersonic shock/boundary-layer interactions
,”
Phys. Rev. Fluids
5
,
014602
(
2020
).
23.
M.
Wu
and
M.
Martin
, “
Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp
,”
AIAA J.
45
,
879
889
(
2007
).
24.
S.
Priebe
and
M.
Martín
, “
Low-frequency unsteadiness in shock wave–turbulent boundary layer interaction
,”
J. Fluid Mech.
699
,
1
49
(
2012
).
25.
N.
Clemens
and
V.
Narayanaswamy
, “
Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions
,”
Annu. Rev. Fluid Mech.
46
,
469
492
(
2014
).
26.
S.
Priebe
,
J.
Tu
,
C.
Rowley
, and
M.
Martín
, “
Low-frequency dynamics in a shock-induced separated flow
,”
J. Fluid Mech.
807
,
441
477
(
2016
).
27.
W.
Hu
,
S.
Hickel
, and
B.
Van Oudheusden
, “
Low-frequency unsteadiness mechanisms in shock wave/turbulent boundary layer interactions over a backward-facing step
,”
J. Fluid Mech.
915
,
A107
(
2021
).
28.
A.
Ceci
,
A.
Palumbo
,
J.
Larsson
, and
S.
Pirozzoli
, “
On low-frequency unsteadiness in swept shock wave–boundary layer interactions
,”
J. Fluid Mech.
956
,
R1
(
2023
).
29.
S.
Pirozzoli
and
M.
Bernardini
, “
Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction
,”
AIAA J.
49
,
1307
1312
(
2011
).
30.
F.
Tong
,
C.
Yu
,
Z.
Tang
, and
X.
Li
, “
Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner: Turning angle effects
,”
Comput. Fluids
149
,
56
69
(
2017
).
31.
K.
Zhu
,
L.
Jiang
,
W.
Liu
,
M.
Sun
,
Q.
Wang
, and
Z.
Hu
, “
Wall temperature effects on shock wave/turbulent boundary layer interaction via direct numerical simulation
,”
Acta Astronaut.
178
,
499
510
(
2021
).
32.
Y.
Zhuang
,
H.
Tan
,
X.
Li
,
F.
Sheng
, and
Y.
Zhang
, “
Görtler-like vortices in an impinging shock wave/turbulent boundary layer interaction flow
,”
Phys. Fluids
30
,
061702
(
2018
).
33.
J.
Fang
,
A.
Zheltovodov
,
Y.
Yao
,
C.
Moulinec
, and
D.
Emerson
, “
On the turbulence amplification in shock-wave/turbulent boundary layer interaction
,”
J. Fluid Mech.
897
,
A32
(
2020
).
34.
V.
Pasquariello
,
S.
Hickel
, and
N.
Adams
, “
Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number
,”
J. Fluid Mech.
823
,
617
657
(
2017
).
35.
R.
Humble
,
F.
Scarano
, and
B.
Van Oudheusden
, “
Unsteady aspects of an incident shock wave/turbulent boundary layer interaction
,”
J. Fluid Mech.
635
,
47
74
(
2009
).
36.
W.
Saric
, “
Görtler vortices
,”
Annu. Rev. Fluid Mech.
26
,
379
409
(
1994
).
37.
M.
Yu
,
M.
Zhao
,
Z.
Tang
,
X.
Yuan
, and
C.
Xu
, “
A spectral inspection for turbulence amplification in oblique shock wave/turbulent boundary layer interaction
,”
J. Fluid Mech.
951
,
A2
(
2022
).
38.
M.
Yu
,
S.
Dong
,
P.
Liu
,
Z.
Tang
,
X.
Yuan
, and
C.
Xu
, “
Post-shock turbulence recovery in oblique shock/turbulent boundary layers interaction flows
,”
J. Fluid Mech.
961
,
A26
(
2023
).
39.
S.
Priebe
and
M.
Martín
, “
Turbulence in a hypersonic compression ramp flow
,”
Phys. Rev. Fluids
6
,
034601
(
2021
).
40.
L.
Back
and
R.
Cuffel
, “
Changes in heat transfer from turbulent boundary layers interacting with shock waves and expansion waves
,”
AIAA J.
8
,
1871
1873
(
1970
).
41.
J.
Gaviglio
, “
Reynolds analogies and experimental study of heat transfer in the supersonic boundary layer
,”
Int. J. Heat Mass Transfer
30
,
911
926
(
1987
).
42.
T.
Gatski
and
J.
Bonnet
,
Compressibility, Turbulence and High Speed Flow
(
Academic Press
,
2013
).
43.
M.
Holden
, “
Shock wave-turbulent boundary layer interaction in hypersonic flow
,” AIAA Paper No. 77-074,
1977
.
44.
F.
Hung
and
D.
Barnett
, “
Shockwave-boundary layer interference heating analysis
,” AIAA Paper No. 73-237,
1973
.
45.
C. M.
Helm
and
M.
Martín
, “
Large eddy simulation of two separated hypersonic shock/turbulent boundary layer interactions
,”
Phys. Rev. Fluids
7
,
074601
(
2022
).
46.
C.
Helm
,
M.
Martín
, and
O.
Williams
, “
Characterization of the shear layer in separated shock/turbulent boundary layer interactions
,”
J. Fluid Mech.
912
,
A7
(
2021
).
47.
M.
Di Renzo
,
N.
Oberoi
,
J.
Larsson
, and
S.
Pirozzoli
, “
Crossflow effects on shock wave/turbulent boundary layer interactions
,”
Theor. Comput. Fluid Dyn.
36
,
327
344
(
2022
).
48.
J.
Larsson
,
V.
Kumar
,
N.
Oberoi
,
M.
Renzo
, and
S.
Pirozzoli
, “
Large-eddy simulations of idealized shock/boundary-layer interactions with crossflow
,”
AIAA J.
60
,
2767
2779
(
2022
).
49.
J.
Zhang
,
T.
Guo
,
G.
Dang
, and
X.
Li
, “
Direct numerical simulation of shock wave/turbulent boundary layer interaction in a swept compression ramp at Mach 6
,”
Phys. Fluids
34
,
116110
(
2022
).
50.
X.
Li
,
Y.
Zhang
,
H.
Yu
,
Z.
Lin
,
H.
Tan
, and
S.
Sun
, “
Görtler vortices behavior and prediction in dual-incident shock-wave/turbulent-boundary-layer interactions
,”
Phys. Fluids
34
,
106103
(
2022
).
51.
G.
Liang
,
H.
Huang
,
H.
Tan
,
Z.
Luo
,
X.
Tang
,
C.
Li
, and
J.
Cai
, “
Shock train/glancing shock/boundary layer interaction in a curved isolator with sidewall contraction
,”
Phys. Fluids
34
,
116106
(
2022
).
52.
A.
Musker
, “
Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer
,”
AIAA J.
17
,
655
657
(
1979
).
53.
M.
Klein
,
A.
Sadiki
, and
J.
Janicka
, “
A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations
,”
J. Comput. Phys.
186
,
652
665
(
2003
).
54.
Y.
Zhang
,
W.
Bi
,
F.
Hussain
, and
Z.
She
, “
A generalized Reynolds analogy for compressible wall-bounded turbulent flows
,”
J. Fluid Mech.
739
,
392
420
(
2014
).
55.
S.
Pirozzoli
and
T.
Colonius
, “
Generalized characteristic relaxation boundary conditions for unsteady compressible flow simulations
,”
J. Comput. Phys.
248
,
109
126
(
2013
).
56.
M.
Bernardini
,
D.
Modesti
,
F.
Salvadore
, and
S.
Pirozzoli
, “
STREAmS: A high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows
,”
Comput. Phys. Commun.
263
,
107906
(
2021
).
57.
S.
Pirozzoli
, “
Generalized conservative approximations of split convective derivative operators
,”
J. Comput. Phys.
229
,
7180
7190
(
2010
).
58.
G.
Jiang
and
C.
Shu
, “
Efficient implementation of weighted ENO schemes
,”
J. Comput. Phys.
126
,
202
228
(
1996
).
59.
F.
Ducros
,
V.
Ferrand
,
F.
Nicoud
,
C.
Weber
,
D.
Darracq
,
C.
Gacherieu
, and
T.
Poinsot
, “
Large-eddy simulation of the shock/turbulence interaction
,”
J. Comput. Phys.
152
,
517
549
(
1999
).
60.
S.
Pirozzoli
, “
Numerical methods for high-speed flows
,”
Annu. Rev. Fluid Mech.
43
,
163
194
(
2011
).
61.
S.
Lele
, “
Compact finite difference schemes with spectral-like resolution
,”
J. Comput. Phys.
103
,
16
42
(
1992
).
62.
S.
Nagarajan
,
S.
Lele
, and
J.
Ferziger
, “
A robust high-order compact method for large eddy simulation
,”
J. Comput. Phys.
191
,
392
419
(
2003
).
63.
A.
Wray
, “
Minimal storage time advancement schemes for spectral methods
,”
Report No. MS 202
(
NASA Ames Research Center
,
California
,
1990
).
64.
S.
Pirozzoli
and
M.
Bernardini
, “
Turbulence in supersonic boundary layers at moderate Reynolds number
,”
J. Fluid Mech.
688
,
120
168
(
2011
).
65.
J.
Lee
,
H.
Sung
, and
P.
Krogstad
, “
Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall
,”
J. Fluid Mech.
669
,
397
431
(
2011
).
66.
M.
Yu
,
P.
Liu
,
X.
Yuan
,
Z.
Tang
, and
C.
Xu
, “
Effects of wall disturbances on the statistics of supersonic turbulent boundary layers
,”
Phys. Fluids
35
,
025126
(
2023
).
67.
S.
Navarro-Martinez
and
O.
Tutty
, “
Numerical simulation of Görtler vortices in hypersonic compression ramps
,”
Comput. Fluids
34
,
225
247
(
2005
).
68.
S.
Cao
,
I.
Klioutchnikov
, and
H.
Olivier
, “
Görtler vortices in hypersonic flow on compression ramps
,”
AIAA J.
57
,
3874
3884
(
2019
).
69.
G.
Currao
,
R.
Choudhury
,
S.
Gai
,
A.
Neely
, and
D.
Buttsworth
, “
Hypersonic transitional shock-wave–boundary-layer interaction on a flat plate
,”
AIAA J.
58
,
814
829
(
2020
).
70.
J.
Nichols
,
J.
Larsson
,
M.
Bernardini
, and
S.
Pirozzoli
, “
Stability and modal analysis of shock/boundary layer interactions
,”
Theor. Comput. Fluid Dyn.
31
,
33
50
(
2017
).
71.
A.
Smits
and
J.
Dussauge
,
Turbulent Shear Layers in Supersonic Flow
(
Springer Science & Business Media
,
2006
).
72.
M.
Loginov
,
N.
Adams
, and
A.
Zheltovodov
, “
Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction
,”
J. Fluid Mech.
565
,
135
169
(
2006
).
73.
Q. C.
Wang
,
Z. G.
Wang
,
M. B.
Sun
,
R.
Yang
,
Y. X.
Zhao
, and
Z.
Hu
, “
The amplification of large-scale motion in a supersonic concave turbulent boundary layer and its impact on the mean and statistical properties
,”
J. Fluid Mech.
863
,
454
493
(
2019
).
74.
S.
Pope
,
Turbulent Flows
(
Cambridge university Press
,
2000
).
75.
T.
Gatski
and
C.
Speziale
, “
On explicit algebraic stress models for complex turbulent flows
,”
J. Fluid Mech.
254
,
59
78
(
1993
).
76.
T.
Craft
,
B.
Launder
, and
K.
Suga
, “
Development and application of a cubic eddy-viscosity model of turbulence
,”
Int. J. Heat Fluid Flow
17
,
108
115
(
1996
).
77.
T.
Jongen
and
T.
Gatski
, “
General explicit algebraic stress relations and best approximation for three-dimensional flows
,”
Int. J. Eng. Sci.
36
,
739
763
(
1998
).
78.
F.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
79.
J.
Huang
,
J.
Bretzke
, and
L.
Duan
, “
Assessment of turbulence models in a hypersonic cold-wall turbulent boundary layer
,”
Fluids
4
,
37
(
2019
).
80.
B.
Morgan
,
K.
Duraisamy
,
N.
Nguyen
,
S.
Kawai
, and
S.
Lele
, “
Flow physics and RANS modelling of oblique shock/turbulent boundary layer interaction
,”
J. Fluid Mech.
729
,
231
284
(
2013
).
81.
R.
So
,
L.
Jin
, and
T.
Gatski
, “
An explicit algebraic Reynolds stress and heat flux model for incompressible turbulence. I. Non-isothermal flow
,”
Theor. Comput. Fluid Dyn.
17
,
351
376
(
2004
).
82.
B.
Wang
,
E.
Yee
,
J.
Yin
, and
D.
Bergstrom
, “
A general dynamic linear tensor-diffusivity subgrid-scale heat flux model for large-eddy simulation of turbulent thermal flows
,”
Numer. Heat Transfer, Part B
51
,
205
227
(
2007
).
83.
F.
Menter
, “
Zonal two equation k ω turbulence models for aerodynamic flows
,” AIAA Paper No. 93-2906,
1993
.
84.
F.
Menter
,
M.
Kuntz
, and
R.
Langtry
, “
Ten years of industrial experience with the SST turbulence model
,”
Turbul. Heat Mass Transfer
4
,
625
632
(
2003
), available at https://www.tib.eu/de/suchen/id/BLCP%3ACN053216624.
85.
K.
Sinha
,
K.
Mahesh
, and
G.
Candler
, “
Modeling shock unsteadiness in shock/turbulence interaction
,”
Phys. Fluids
15
,
2290
2297
(
2003
).
86.
L.
Ma
,
L.
Lu
,
J.
Fang
, and
Q.
Wang
, “
A study on turbulence transportation and modification of Spalart–Allmaras model for shock-wave/turbulent boundary layer interaction flow
,”
Chin. J. Aeronaut.
27
,
200
209
(
2014
).
87.
P.
Raje
and
K.
Sinha
, “
Anisotropic SST turbulence model for shock-boundary layer interaction
,”
Comput. Fluids
228
,
105072
(
2021
).
88.
H.
Zhang
,
T.
Craft
, and
H.
Iacovides
, “
Application of linear and nonlinear two-equation turbulence models in hypersonic flows
,”
AIAA J.
60
,
3472
3486
(
2022
).
89.
R.
Gaffney
, Jr.
,
X.
Xiao
,
J.
Edwards
, and
H.
Hassan
, “
Role of turbulent Prandtl number on heat flux at hypersonic Mach numbers
,” AIAA Paper No. 2005-1098,
2005
.
90.
S.
Roy
and
K.
Sinha
, “
Turbulent heat flux model for hypersonic shock–boundary layer interaction
,”
AIAA J.
57
,
3624
3629
(
2019
).
91.
A.
Pasha
and
K.
Juhany
, “
Numerical simulation of compression corner flows at Mach number 9
,”
Chin. J. Aeronaut.
33
,
1611
1624
(
2020
).
92.
A.
Ali Pasha
,
K.
Juhany
, and
M.
Khalid
, “
Numerical prediction of shock/boundary-layer interactions at high Mach numbers using a modified Spalart–Allmaras model
,”
Eng. Appl. Comput. Fluid Mech.
12
,
459
472
(
2018
).
93.
E.
Schülein
, “
Skin friction and heat flux measurements in shock/boundary layer interaction flows
,”
AIAA J.
44
,
1732
1741
(
2006
).
94.
M.
Holden
,
T.
Wadhams
, and
M.
MacLean
, “
Measurements in regions of shock wave/turbulent boundary layer interaction from Mach 4 to 10 for open and ‘blind’ code evaluation/validation
,” AIAA Paper No. 2013-2836,
2013
.
You do not currently have access to this content.