The interactions between oblique and bow shock waves are significant problems related to the aerodynamic force and thermal performance of hypersonic vehicles, but few studies have considered the dynamic effect of the body's motion on the phenomena. In this work, a numerical study on the oblique and bow shock waves ahead of an elliptic cylinder rotating with a forced-oscillation approach was conducted at Mach 5 by solving the unsteady, two-dimensional Navier–Stokes equations in a non-inertial coordinate system. The hysteresis loops of aerodynamic coefficients were analyzed first, and it was found that the moment is sensitive to rotation. Then, two different hysteresis forms were found at positive and negative angles of rotation (AOR), corresponding to cases with the interference point above or below the wall, respectively. When AOR is positive, the rate-dependent transition hysteresis among various shock interaction types causes the movement of strong flow structures (reflected shock wave, Mach stem, and jet) to always lag behind the body's motion. When AOR is negative, besides the evolution hysteresis of flow structures, two unusual patterns between Edney Types III and VI were observed on different transition paths, which led to very different peak pressures. Also discussed are the driving mechanisms associated with the effect of the subsonic region and the downstream boundary of the interaction zone, as well as the modulating action of the formed virtual Laval flow channel. Additional simulations were performed to study the effect of rotation speed on the transition boundary and the transition structures between Types III and VI.

1.
B. E.
Edney
, “
Effects of shock impingement on the heat transfer around blunt bodies
,”
AIAA J.
6
,
15
(
1968
).
2.
C.
Windisch
,
B. U.
Reinartz
, and
S.
Müller
, “
Investigation of unsteady Edney Type IV and VII shock–shock interactions
,”
AIAA J.
54
,
1846
(
2016
).
3.
Y. B.
Chu
and
X. Y.
Lu
, “
Characteristics of unsteady type IV shock/shock interaction
,”
Shock Waves
22
,
225
(
2012
).
4.
G.
Kumar
and
A.
De
, “
Modes of unsteadiness in shock wave and separation region interaction in hypersonic flow over a double wedge geometry
,”
Phys. Fluids
33
,
076107
(
2021
).
5.
M.
Holden
,
J.
Moselle
,
A.
Wieting
, and
C.
Glass
, “
Studies of aerothermal loads generated in regions of shock/shock interaction in hypersonic flow
,” in
26th Aerospace Sciences Meeting, Reno, Nevada
(AIAA, 1988), pp. 477.
6.
A. R.
Wieting
and
M. S.
Holden
, “
Experimental shock-wave interference heating on a cylinder at Mach 6 and 8
,”
AIAA J.
27
,
1557
(
1989
).
7.
J.
Wang
,
Z.
Li
,
Z.
Zhang
, and
J.
Yang
, “
Shock interactions on V-shaped blunt leading edges with various conic crotches
,”
AIAA J.
58
,
1407
(
2020
).
8.
A.
Adityanarayan Ray
and
A.
De
, “
Leading-edge bluntness effects on the hypersonic flow over the double wedge at multiple aft-wedge angles
,”
Phys. Fluids
35
,
056116
(
2023
).
9.
M.
Lin
,
F.
Yang
,
Z.
Hu
,
C.
Wang
, and
Z.
Jiang
, “
Transitional criterion and hysteresis of multiple shock–shock interference
,”
Phys. Fluids
35
,
046110
(
2023
).
10.
Y.
Wang
,
Y.
Wang
, and
Z.
Jiang
, “
Experimental study of longitudinal stage separation of two-body configuration in shock tunnel
,”
AIAA J.
60
,
6940
(
2022
).
11.
J.
Jia
,
D.
Fu
,
Z.
He
,
J.
Yang
, and
L.
Hu
, “
Hypersonic aerodynamic interference investigation for a two-stage-to-orbit model
,”
Acta Astronaut.
168
,
138
(
2020
).
12.
Y.
Wang
,
Y. P.
Wang
, and
Z. L.
Jiang
, “
Unsteady interaction mechanism of transverse stage separation in hypersonic flow for a two-stage-to-orbit vehicle
,”
Phys. Fluids
35
,
056120
(
2023
).
13.
G.
Wu
, “
How to estimate the effect of an intense meteor shower on human space activities
,”
Sci. China Ser. G: Phys. Mech. Astron.
52
,
1161
(
2009
).
14.
N.
Artemieva
and
E.
Pierazzo
, “
The Canyon Diablo impact event: Projectile motion through the atmosphere
,”
Meteorit. Planet. Sci.
44
,
25
(
2009
).
15.
S. J.
Laurence
and
R.
Deiterding
, “
Shock-wave surfing
,”
J. Fluid Mech.
676
,
396
(
2011
).
16.
S. J.
Laurence
,
N. J.
Parziale
, and
R.
Deiterding
, “
Dynamical separation of spherical bodies in supersonic flow
,”
J. Fluid Mech.
713
,
159
(
2012
).
17.
C. S.
Butler
,
T. J.
Whalen
,
C. E.
Sousa
, and
S. J.
Laurence
, “
Dynamics of a spherical body shedding from a hypersonic ramp. II. Viscous flow
,”
J. Fluid Mech.
906
,
A29
(
2021
).
18.
C. E.
Sousa
,
R.
Deiterding
, and
S. J.
Laurence
, “
Dynamics of a spherical body shedding from a hypersonic ramp. I. Inviscid flow
,”
J. Fluid Mech.
906
,
A28
(
2021
).
19.
G.
Ben-Dor
,
M.
Ivanov
,
E.
Vasilev
, and
T.
Elperin
, “
Hysteresis processes in the regular reflection ↔ Mach reflection transition in steady flows
,”
Prog. Aerosp. Sci.
38
,
347
(
2002
).
20.
H.
Hornung
,
H.
Oertel
, and
R.
Sandeman
, “
Transition to Mach reflexion of shock waves in steady and pseudosteady flow with and without relaxation
,”
J. Fluid Mech.
90
,
541
(
1979
).
21.
L. T.
Felthun
and
B. W.
Skews
, “
Dynamic shock wave reflection
,”
AIAA J.
42
,
1633
(
2004
).
22.
C. A.
Mouton
and
H. G.
Hornung
, “
Experiments on the mechanism of inducing transition between regular and Mach reflection
,”
Phys. Fluids
20
,
126103
(
2008
).
23.
R.
Goyal
,
A.
Sameen
,
T.
Jayachandran
, and
G.
Rajesh
, “
Dynamic effects in transition from regular to Mach reflection in steady supersonic flows
,”
Phys. Rev. E
104
,
055101
(
2021
).
24.
J. K.
James
and
H. D.
Kim
, “
Oscillatory behaviors of multiple shock waves to upstream disturbances
,”
Phys. Fluids
35
,
056113
(
2023
).
25.
L.
Laguarda
,
S.
Hickel
,
F.
Schrijer
, and
B.
Van Oudheusden
, “
Dynamics of unsteady asymmetric shock interactions
,”
J. Fluid Mech.
888
,
A18
(
2020
).
26.
F.
Grasso
,
C.
Purpura
,
B.
Chanetz
, and
J.
Délery
, “
Type III and type IV shock/shock interferences: Theoretical and experimental aspects
,”
Aerosp. Sci. Technol.
7
,
93
(
2003
).
27.
D.
Wang
,
G.
Han
,
M.
Liu
, and
Z.
Jiang
, “
Numerical investigation on unsteady interaction of oblique/bow shock during rotation based on non-inertial coordinate system
,”
Phys. Fluids
34
,
121703
(
2022
).
28.
S. M.
Boldyrev
,
V. Y.
Borovoy
,
A. Y.
Chinilov
,
V. N.
Gusev
,
S. N.
Krutiy
,
I. V.
Struminskaya
,
L. V.
Yakovleva
,
J.
Délery
, and
B.
Chanetz
, “
A thorough experimental investigation of shock/shock interferences in high Mach number flows
,”
Aerosp. Sci. Technol.
5
,
167
(
2001
).
29.
S.
Yamamoto
,
N.
Takasu
, and
H.
Nagatomo
, “
Numerical investigation of shock/vortex interaction in hypersonic thermochemical nonequilibrium flow
,”
J. Spacecr. Rockets
36
,
240
(
1999
).
30.
C.-Y.
Bai
and
Z.-N.
Wu
, “
Type IV shock interaction with a two-branch structured transonic jet
,”
J. Fluid Mech.
941
,
A45
(
2022
).
31.
J.
Peng
,
S.
Li
,
F.
Yang
,
M.
Lin
,
G.
Han
, and
Z.
Hu
, “
Transitional wave configurations between Type III and Type IV oblique-shock/bow-shock interactions
,”
Chin. J. Aeronaut.
36
,
96
(
2023
).
32.
J.
Camargo
,
O.
López
, and
N.
Ochoa-Lleras
, “
A computational tool for unsteady aerodynamic flow simulations coupled with rigid body dynamics and control
,” AIAA Paper No. 2012-3034,
2012
.
33.
M. M.
Rajamuni
,
M. C.
Thompson
, and
K.
Hourigan
, “
Efficient FSI solvers for multiple-degrees-of-freedom flow-induced vibration of a rigid body
,”
Comput. Fluids
196
,
104340
(
2020
).
34.
S.
Jacob
,
E.
Trigell
,
M.
Mihaescu
, and
M.
Åbom
, “
Acoustic scattering in a small centrifugal compressor based on the use of linearized equations in a rotating frame
,”
J. Sound Vib.
544
,
117315
(
2023
).
35.
H.
Zhang
and
F.
Zhuang
, “
NND schemes and their applications to numerical simulation of two-and three-dimensional flows
,”
Adv. Appl. Mech.
29
,
193
(
1991
).
36.
B.
Meng
,
G.
Han
,
C.
Luo
, and
Z.
Jiang
, “
Numerical investigation of the axial impulse load during the startup in the shock tunnel
,”
Aerosp. Sci. Technol.
73
,
332
(
2018
).
37.
F.
Deng
,
G.
Han
,
M.
Liu
,
J.
Ding
,
P.
Weng
, and
Z.
Jiang
, “
Numerical simulation of the interaction of two shear layers in double backward-facing steps
,”
Phys. Fluids
31
,
056106
(
2019
).
38.
D.
Liechty
, “
Aeroheating characteristics for a two-stage-to-orbit concept during separation at Mach 6
,” AIAA Paper No. 2005-5139,
2005
.
39.
M. A.
Moelyadi
,
C.
Breitsamter
, and
B.
Laschka
, “
Stage-separation aerodynamics of two-stage space transport systems. I. Steady-state simulations
,”
J. Spacecr. Rockets
45
,
1230
(
2008
).
40.
H.
Ozawa
,
K.
Hanai
,
K.
Kitamura
,
K.
Mori
, and
Y.
Nakamura
, “
Experimental investigation of shear-layer/body interactions in TSTO at hypersonic speeds
,” AIAA Paper No. 2008-723,
2008
.
41.
R.
Landon
, “
NACA 0012 oscillatory and transient pitching
,” AGARD Report No. 702, 1982.
You do not currently have access to this content.