This paper presents a comprehensive analysis of the structure of fuel-spray planar detonations, the main purpose being the identification of the parametric values that enable steady propagation. The analysis makes use of a multi-continua Eulerian−Eulerian formulation that accounts for momentum, energy, and mass exchange between the gaseous and disperse phases, with attention directed to configurations exhibiting two-way coupling. The main effects of the two-way coupling interactions are explored and distinguished propagation limits are identified, thereby clarifying the consequences of previous simplified theoretical descriptions. The analysis of the post-shock relaxation region reveals, in particular, that energy transfer associated with additional compression work, thermal conduction, and vaporization of fuel particles in the induction region alter Chapman–Jouguet conditions in several ways, which may be key to detonation failure in numerous real-life scenarios.

1.
W.
Fickett
and
W. C.
Davis
,
Detonation: Theory and Experiment
(
Courier Corporation
,
2000
).
2.
Q.
Meng
,
N.
Zhao
, and
H.
Zhang
, “
On the distributions of fuel droplets and in situ vapor in rotating detonation combustion with prevaporized n-heptane sprays
,”
Phys. Fluids
33
,
043307
(
2021
).
3.
N.
Jourdaine
,
N.
Tsuboi
, and
A. K.
Hayashi
, “
Investigation of liquid n-heptane/air spray detonation with an Eulerian-Eulerian model
,”
Combust. Flame
244
,
112278
(
2022
).
4.
H.
Wen
,
W.
Wei
,
W.
Fan
,
Q.
Xie
, and
B.
Wang
, “
On the propagation stability of droplet-laden two-phase rotating detonation waves
,”
Combust. Flame
244
,
112271
(
2022
).
5.
M.
Pilch
and
C.
Erdman
, “
Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop
,”
Int. J. Multiphase Flow
13
,
741
757
(
1987
).
6.
T.
Theofanous
, “
Aerobreakup of Newtonian and viscoelastic liquids
,”
Annu. Rev. Fluid Mech.
43
,
661
690
(
2011
).
7.
S.
Sharma
,
A. P.
Singh
,
S.
Rao
,
A.
Kumar
, and
S.
Basu
, “
Shock induced aerobreakup of a droplet
,”
J. Fluid Mech.
929
,
A27
(
2021
).
8.
V.
Duke-Walker
,
W. C.
Maxon
,
S. R.
Almuhna
, and
J. A.
McFarland
, “
Evaporation and breakup effects in the shock-driven multiphase instability
,”
J. Fluid Mech.
908
,
A13
(
2021
).
9.
G.
Carrier
, “
Shock waves in a dusty gas
,”
J. Fluid Mech.
4
,
376
382
(
1958
).
10.
G.
Rudinger
, “
Some properties of shock relaxation in gas flows carrying small particles
,”
Phys. Fluids
7
,
658
663
(
1964
).
11.
F. E.
Marble
, “
Dynamics of dusty gases
,”
Annu. Rev. Fluid Mech.
2
,
397
446
(
1970
).
12.
P.
Evans
and
J.
Mackie
, “
Shock-wave interaction with an evaporating aerosol
,”
Phys. Fluids
14
,
539
541
(
1971
).
13.
J.
Kersey
,
E.
Loth
, and
D.
Lankford
, “
Effect of evaporating droplets on shock waves
,”
AIAA J.
48
,
1975
1986
(
2010
).
14.
B.-C.
Fan
and
M.
Sichel
, “
A comprehensive model for the structure of dust detonations
,” in
Symposium (International) on Combustion
(
Elsevier
,
1989
), Vol.
22
, pp.
1741
1750
.
15.
K.
Kailasanath
, “
Liquid-fueled detonations in tubes
,”
J. Propul. Power
22
,
1261
1268
(
2006
).
16.
T.
Lu
and
C. K.
Law
, “
Heterogeneous effects in the propagation and quenching of spray detonations
,”
J. Propul. Power
20
,
820
827
(
2004
).
17.
F. A.
Williams
, “
Structure of detonations in dilute sprays
,”
Phys. Fluids
4
,
1434
1443
(
1961
).
18.
E.
Dabora
,
K.
Ragland
, and
J.
Nicholls
, “
Drop-size effects in spray detonations
,” in
Symposium (International) on Combustion
(
Elsevier
,
1969
), Vol.
12
, pp.
19
26
.
19.
Z.
Zhang
,
C.
Wen
,
Y.
Liu
,
D.
Zhang
, and
Z.
Jiang
, “
Effects of different particle size distributions on aluminum particle–air detonation
,”
AIAA J.
58
,
3115
3128
(
2020
).
20.
Z.
Huang
and
H.
Zhang
, “
On the interactions between a propagating shock wave and evaporating water droplets
,”
Phys. Fluids
32
,
123315
(
2020
).
21.
Q.
Meng
,
M.
Zhao
,
Y.
Xu
,
L.
Zhang
, and
H.
Zhang
, “
Structure and dynamics of spray detonation in n-heptane droplet/vapor/air mixtures
,”
Combust. Flame
249
,
112603
(
2023
).
22.
A. L.
Sánchez
,
J.
Urzay
, and
A.
Liñán
, “
The role of separation of scales in the description of spray combustion
,”
Proc. Combust. Inst.
35
,
1549
1577
(
2015
).
23.
A.
Liñán
,
D.
Martinez-Ruiz
,
A. L.
Sánchez
, and
J.
Urzay
, “
Regimes of spray vaporization and combustion in counterflow configurations
,”
Combust. Sci. Technol.
187
,
103
131
(
2015
).
24.
O.
Dounia
,
O.
Vermorel
,
T.
Jaravel
, and
T.
Poinsot
, “
Time scale analysis of the homogeneous flame inhibition by alkali metals
,”
Proc. Combust. Inst.
38
,
2371
2378
(
2021
).
25.
O.
Dounia
,
T.
Jaravel
, and
O.
Vermorel
, “
On the controlling parameters of the thermal decomposition of inhibiting particles: A theoretical and numerical study
,”
Combust. Flame
240
,
111991
(
2022
).
26.
D.
Martínez-Ruiz
,
J.
Urzay
,
A.
Sánchez
,
A.
Liñán
, and
F.
Williams
, “
Dynamics of thermal ignition of spray flames in mixing layers
,”
J. Fluid Mech.
734
,
387
423
(
2013
).
27.
H.
Lee
and
D. S.
Stewart
, “
Calculation of linear detonation instability: One-dimensional instability of plane detonation
,”
J. Fluid Mech.
216
,
103
132
(
1990
).
28.
W. A.
Sirignano
, “
Fuel droplet vaporization and spray combustion theory
,”
Prog. Energy Combust. Sci.
9
,
291
322
(
1983
).
29.
B.
Fang
,
L.
Chen
,
G.
Li
, and
L.
Wang
, “
Multi-component droplet evaporation model incorporating the effects of non-ideality and thermal radiation
,”
Int. J. Heat Mass Transfer
136
,
962
971
(
2019
).
30.
A.
Millán-Merino
,
E.
Fernández-Tarrazo
, and
M.
Sánchez-Sanz
, “
Theoretical and numerical analysis of the evaporation of mono-and multicomponent single fuel droplets
,”
J. Fluid Mech.
910
,
A11
(
2021
).
31.
H.
Nomura
,
Y.
Ujiie
,
H. J.
Rath
,
J.
Sato
, and
M.
Kono
, “
Experimental study on high-pressure droplet evaporation using microgravity conditions
,” in
Symposium (International) on Combustion
(
Elsevier
,
1996
), Vol.
26
, pp.
1267
1273
.
32.
A.
Lee
and
C. K.
Law
, “
An experimental investigation on the vaporization and combustion of methanol and ethanol droplets
,”
Combust. Sci. Technol.
86
,
253
265
(
1992
).
33.
D. R.
Haylett
,
D. F.
Davidson
, and
R. K.
Hanson
, “
Ignition delay times of low-vapor-pressure fuels measured using an aerosol shock tube
,”
Combust. Flame
159
,
552
561
(
2012
).
34.
J. W.
Hargis
,
S. P.
Cooper
,
O.
Mathieu
,
B.
Guo
, and
E. L.
Petersen
, “
High-temperature ignition behavior of conventional and GTL fuels using an aerosol shock tube
,”
Combust. Flame
226
,
490
504
(
2021
).
35.
M.
Figueroa-Labastida
,
J.
Badra
, and
A.
Farooq
, “
Dual-camera high-speed imaging of the ignition modes of ethanol, methanol and n-hexane in a shock tube
,”
Combust. Flame
224
,
33
42
(
2021
).
36.
F. E.
Marble
, Dynamics of a Gas Containing Small Solid Particles (Pergamon Press, 1963).
37.
H.
Miura
and
I.
Glass
, “
Development of the flow induced by a piston moving impulsively in a dusty gas
,”
Proc. R. Soc. London, Ser. A
397
,
295
309
(
1985
).
You do not currently have access to this content.