Casing treatment is an effective passive technology for improving the compressor stability. However, the current design methods for the casing treatment rely excessively on trial and error experiences, presenting significant challenges to actual engineering applications. In this paper, we propose a multi-objective optimization design method based on stall margin evaluation and data mining to enhance the stability of axial compressor rotors. We have developed a multi-objective optimization platform that combines geometric parameterization, mesh generation, numerical calculations, optimization algorithms, and other relevant components. To optimize six design variables and two objective functions, we have implemented two optimization strategies based on direct stall margin calculation and stall margin evaluation. The optimization results revealed that optimal casing treatment structures can be obtained by considering both compressor stability and efficiency. Furthermore, we employed data mining of self-organizing maps to explain the tradeoffs from the optimal solutions. The aerodynamic analysis demonstrated that the casing treatment enhances stability by restricting negative axial momentum of tip leakage flow and reducing passage blockage. Four categories of stall margin evaluation parameters were quantified, and their effectiveness was assessed through a correlation analysis. Finally, we used the axial momentum of the tip leakage flow-related evaluation parameter for the optimization of stall margin evaluation. Compared with direct stall margin calculation-based optimization, the evaluation of the parameter-based optimization method effectively predicted the stability enhancement of casing treatment while revealing the optimal geometric features. It suggests that the stall margin evaluation-based optimization method should be utilized in the initial optimization process of casing treatment due to its advantages in the optimization speed.

1.
I. J.
Day
, “
Stall, surge and 75 years of research
,”
J. Turbomach.
138
(
1
),
011001
(
2016
).
2.
H.
Li
,
Q.
Zheng
,
Z.
Chen
,
Y.
Duan
,
B.
Jiang
, and
E.
Benini
, “
The role of radial secondary flow in the process of rotating stall for a 1.5-stage axial compressor
,”
Aerosp. Sci. Technol.
115
,
106752
(
2021
).
3.
X.
He
,
Z.
Fang
,
R.
Georgios
, and
M.
Vahdati
, “
Spectral proper orthogonal decomposition of compressor tip leakage flow
,”
Phys. Fluids
33
(
10
),
105105
(
2021
).
4.
H.
Zhu
,
L.
Zhou
,
T.
Meng
, and
L.
Ji
, “
Corner stall control in linear compressor cascade by blended blade and endwall technique based on large eddy simulation
,”
Phys. Fluids
33
,
115124
(
2021
).
5.
T.
Meng
,
X.
Li
,
L.
Zhou
,
H.
Zhu
,
J.
Li
, and
L.
Ji
, “
Large eddy simulation and combined control of corner separation in a compressor cascade
,”
Phys. Fluids
34
(
7
),
075113
(
2022
).
6.
M.
Wang
,
X.
Lu
,
S.
Zhao
, and
Y.
Zhang
, “
Numerical investigations of vortex dynamics and loss generation in the corner separation region of a high subsonic compressor blade
,”
Phys. Fluids
35
(
2
),
025104
(
2023
).
7.
T.
Houghton
and
I. J.
Day
, “
Enhancing the stability of subsonic compressors using casing grooves
,” in
ASME Turbo Expo 2009: Turbomachinery Technical Conference and Exposition
(
ASME
,
2009
).
8.
J.
Du
and
J. R.
Seume
, “
Design of casing treatment on a mixed flow compressor
,” in
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
(
ASME
,
2017
).
9.
H.
Zhang
,
W.
Liu
,
E.
Wang
,
W.
Chu
,
K.
Ding
, and
S.
Yan
, “
Effect of inverse blade angle slots on a transonic rotor performance and stability
,”
Aerosp. Sci. Technol.
96
,
105596
(
2020
).
10.
W.
Wang
,
W.
Chu
,
H.
Zhang
, and
Y.
Wu
, “
Experimental study of self-recirculating casing treatment in a subsonic axial flow compressor
,”
Proc. Inst. Mech. Eng., Part A
230
(
8
),
805
818
(
2016
).
11.
H.
Zhang
,
H.
Wang
,
F.
Dong
,
F.
Jing
, and
W.
Chu
, “
Mechanism study on the effect of self-circulating casing treatment with different circumferential coverage ratios on the axial compressor stability
,”
Phys. Fluids
35
(
5
),
056112
(
2023
).
12.
M.
Voges
,
R.
Schnell
,
C.
Willert
,
R.
Mönig
,
M. W.
Müller
, and
C.
Zscherp
, “
Investigation of blade tip interaction with casing treatment in a transonic compressor—Part I: Particle image velocimetry
,”
J. Turbomach.
133
,
011007
(
2011
).
13.
C.
Brandstetter
,
F.
Wartzek
,
J.
Werner
,
H.-P.
Schiffer
, and
F.
Heinichen
, “
Unsteady measurements of periodic effects in a transonic compressor with casing treatments
,”
J. Turbomach.
138
,
051007
(
2016
).
14.
H.
Chen
,
Y.
Li
, and
J.
Katz
, “
On the interactions of a rotor blade tip flow with axial casing grooves in an axial compressor near the best efficiency point
,”
J. Turbomach.
141
,
011008
(
2019
).
15.
S. S.
Koley
,
A.
Saraswat
, and
J.
Katz
, “
Evolution of turbulence and its modification by axial casing grooves in a multi-stage axial compressor
,”
J. Turbomach.
145
(
3
),
031015
(
2023
).
16.
I.
Wilke
and
H. P.
Kau
, “
A numerical investigation of the flow mechanisms in a high pressure compressor front stage with axial slots
,”
J. Turbomach.
126
(
3
),
339
349
(
2004
).
17.
J.
Streit
,
C.
Brandstetter
,
F.
Heinichen
, and
H. P.
Kau
, “
An advanced axial-slot casing treatment on a transonic compressor: A close look with computational fluid dynamics and experimental validation
,”
Proc. Inst. Mech. Eng., Part A
227
(
6
),
683
691
(
2013
).
18.
H.
Zhang
,
W.
Liu
,
E.
Wang
,
W.
Chu
, and
W.
Yao
, “
Mechanism investigation of enhancing the stability of an axial flow rotor by blade angle slots
,”
Proc. Inst. Mech. Eng., Part G
233
(
13
),
4750
4764
(
2019
).
19.
H.
Zhang
,
E.
Wang
,
W.
Liu
, and
W.
Chu
, “
Mechanism of affecting the axial rotor stability and performance with center offset degrees of axial skewed slots
,”
Proc. Inst. Mech. Eng., Part G
234
(
2
),
330
341
(
2020
).
20.
C.
Hah
, “
The inner workings of axial casing grooves in a one and a half stage axial compressor with a large rotor tip gap: Changes in stall margin and efficiency
,”
J. Turbomach.
141
,
011001
(
2019
).
21.
G.
Carnie
,
Y.
Wang
,
N.
Qin
, and
S.
Shahpar
, “
Design optimization of casing grooves using zipper layer meshing method
,” in
ASME Turbo Expo 2011: Turbomachinery Technical Conference and Exposition
(
ASME
,
2011
).
22.
X.
Wang
,
J.
Sun
,
E.
Benini
,
P.
Song
, and
W.
Chen
, “
Design optimization and flow analysis of discrete tip injection in a transonic compressor based on nonlinear harmonic method and endwall blockage attenuation
,”
Phys. Fluids
35
(
6
),
066103
(
2023
).
23.
G.
Goinis
,
C.
Voß
, and
M.
Aulich
, “
Automated optimization of an axial slot type casing treatment for a transonic compressor
,” in
ASME Turbo Expo 2013: Turbomachinery Technical Conference and Exposition
(
ASME
,
2013
).
24.
D.
Ba
,
Q.
Zhang
,
J.
Du
,
Z.
Li
,
H.
Zhang
, and
C.
Nie
, “
Design optimization of axial slot casing treatment in a highly-loaded mixed-flow compressor
,”
Aerosp. Sci. Technol.
107
,
106262
(
2020
).
25.
G.
Zhu
and
B.
Yang
, “
Optimization of slots-groove coupled casing treatment for an axial transonic compressor
,”
J. Turbomach.
142
(
8
),
081003
(
2020
).
26.
B.
Lu
,
J.
Teng
,
M.
Zhu
, and
X.
Qiang
, “
Design optimization of a transonic compressor blade with sweep and lean integrated with axial slot casing treatment
,”
Aerosp. Sci. Technol.
136
,
108225
(
2023
).
27.
X.
Lu
,
W.
Chu
,
Y.
Zhang
, and
J.
Zhu
, “
Experimental and numerical investigation of a subsonic compressor with bend-skewed slot-casing treatment
,”
Proc. Inst. Mech. Eng., Part C
220
(
12
),
1785
1796
(
2006
).
28.
W.
Wang
,
W.
Chu
,
H.
Zhang
, and
H.
Kuang
, “
Experimental and numerical study of tip injection in a subsonic axial flow compressor
,”
Chin. J. Aeronaut.
30
(
3
),
907
917
(
2017
).
29.
K.
Deb
,
A.
Pratap
, and
S.
Agarwal
, “
A fast and elitist multiobjective genetic algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
6
(
2
),
182
197
(
2002
).
30.
Y.
Ju
and
C.
Zhang
, “
Multi-point and multi-objective optimization design method for industrial axial compressor cascades
,”
Proc. Inst. Mech. Eng., Part C
225
(
6
),
1481
1493
(
2011
).
31.
Q.
Zhao
,
X.
Zhou
, and
X.
Xiang
, “
Multi-objective optimization of groove casing treatment in a transonic compressor
,”
Proc. Inst. Mech. Eng., Part A
228
(
6
),
626
637
(
2014
).
32.
J.
Zhang
,
H.
Zhuang
,
J.
Teng
,
M.
Zhu
, and
X.
Qiang
, “
Aerodynamic optimization to tandem stators by using sweep and dihedral
,”
Proc. Inst. Mech. Eng., Part G
234
(
6
),
1225
1236
(
2020
).
33.
S.
Obayashi
,
S.
Jeong
, and
K.
Chiba
, “
Multi-objective design exploration for aerodynamic configurations
,” AIAA Paper No. 2005-4666,
2005
.
34.
L.
Song
,
Z.
Guo
,
J.
Li
, and
Z.
Feng
, “
Research on metamodel-based global design optimization and data mining methods
,”
J. Eng. Gas Turbines Power
138
(
9
),
092604
(
2016
).
35.
X.
Li
,
Y.
Zhao
, and
Z.
Liu
, “
A novel global optimization algorithm and data-mining methods for turbomachinery design
,”
Struct. Multidiscip. Optim.
60
(
2
),
581
612
(
2019
).
36.
X.
Zhou
,
Q.
Zhao
,
W.
Cui
, and
J.
Xu
, “
Investigation on axial effect of slot casing treatment in a transonic compressor
,”
Appl. Therm. Eng.
126
,
53
69
(
2017
).
37.
B.
Lu
,
M.
Zhu
,
J.
Teng
, and
X.
Qiang
, “
Design strategy of axial slot casing treatment for a transonic compressor rotor based on parametric analysis
,”
Aerosp. Sci. Technol.
119
,
107142
(
2021
).
38.
M. H.
Ross
,
J. D.
Cameron
,
S. C.
Morris
, and
J.
Chen
, “
Axial compressor stall, circumferential groove casing treatment, and the tip-clearance momentum flux
,”
J. Propul. Power
34
(
1
),
146
152
(
2018
).
You do not currently have access to this content.