The shock surface geometry is investigated with direct numerical simulations of a weak normal shock wave propagating in turbulence. The geometry is quantified with the principal curvatures of the surface. A large part of the surface has an approximately flat saddle shape, while elliptic concave and convex shapes with a large curvature intermittently appear on the shock surface. The pressure–dilatation correlation in the governing equation of pressure is investigated at the shock wave with the decomposition into three terms associated with the velocity gradients in the two directions of the principal curvatures and the normal direction of the shock wave. Fluid expansion in the tangential direction occurs at the shock wave with a convex shape in the direction of the shock propagation, resulting in a smaller pressure jump across the shock wave. For a concave shape, compression in the tangential direction can amplify the pressure jump. Consistently, small and large shock Mach numbers are observed for convex and concave shapes, respectively. The geometric influences are the most significant for elliptic concave and convex shapes with approximately equal curvatures in the two principal directions because the compression or expansion occurs in all tangential directions. These relations between the shock surface geometry and shock Mach number observed in turbulence are consistent with the theory of deformed shock waves, suggesting that the three-dimensional geometrical features of the shock surface are important in the modulation of shock waves due to turbulence.

1.
X.-X.
Yan
,
H.-B.
Cai
,
W.-S.
Zhang
,
L.
Hao
,
P.-L.
Yao
,
X.
Li
,
S.-Y.
Zou
,
S.-P.
Zhu
, and
X.-T.
He
, “
Anomalous mix induced by a collisionless shock wave in an inertial confinement fusion hohlraum
,”
Nucl. Fusion
59
,
106016
(
2019
).
2.
S. I.
Abarzhi
,
D. L.
Hill
,
K. C.
Williams
,
J. T.
Li
,
B. A.
Remington
,
D.
Martinez
, and
W. D.
Arnett
, “
Fluid dynamic mathematical aspects of supernova remnants
,”
Phys. Fluids
35
,
034106
(
2023
).
3.
G. M.
Lilley
and
A. H.
Yates
, “
Some aspects of noise from supersonic aircraft
,”
J. R. Aeronaut. Soc.
57
,
396
(
1953
).
4.
A.
Kawasaki
,
T.
Inakawa
,
J.
Kasahara
,
K.
Goto
,
K.
Matsuoka
,
A.
Matsuo
, and
I.
Funaki
, “
Critical condition of inner cylinder radius for sustaining rotating detonation waves in rotating detonation engine thruster
,”
Proc. Combust. Inst.
37
,
3461
(
2019
).
5.
C.
Cerri
, “
The effects of sonic boom on the ecological environment
,”
J. Navig.
33
,
296
(
1980
).
6.
D. J.
Maglieri
, “
Some effects of airplane operations and the atmosphere on sonic-boom signatures
,”
J. Acoust. Soc. Am.
39
,
S36
(
1966
).
7.
M.
Kanamori
,
T.
Takahashi
,
Y.
Makino
,
Y.
Naka
, and
H.
Ishikawa
, “
Comparison of simulated sonic boom in stratified atmosphere with flight test measurements
,”
AIAA J.
56
,
2743
(
2018
).
8.
T. K.
Sengupta
,
A. G.
Roy
,
A.
Chakraborty
,
A.
Sengupta
, and
P.
Sundaram
, “
Thermal control of transonic shock-boundary layer interaction over a natural laminar flow airfoil
,”
Phys. Fluids
33
,
126110
(
2021
).
9.
R.
Quadros
and
M.
Bernardini
, “
Numerical investigation of transitional shock-wave/boundary-layer interaction in supersonic regime
,”
AIAA J.
56
,
2712
(
2018
).
10.
J.
Cheng
,
K.
Yang
,
X.
Zheng
,
C.
Shi
,
C.
Zhu
, and
Y.
You
, “
Analytical model for predicting the length scale of shock/boundary layer interaction with curvature
,”
Phys. Fluids
34
,
111701
(
2022
).
11.
Y. P. M.
Sethuraman
,
K.
Sinha
, and
J.
Larsson
, “
Thermodynamic fluctuations in canonical shock–turbulence interaction: Effect of shock strength
,”
Theor. Comput. Fluid Dyn.
32
,
629
(
2018
).
12.
Y. P. M.
Sethuraman
and
K.
Sinha
, “
Modeling of thermodynamic fluctuations in canonical shock–turbulence interaction
,”
AIAA J.
58
,
3076
(
2020
).
13.
C. H.
Chen
, “
Linear analysis on pressure-dilatation behind shock waves
,”
Phys. Fluids
35
,
021701
(
2023
).
14.
K.
Mahesh
,
S. K.
Lele
, and
P.
Moin
, “
The response of anisotropic turbulence to rapid homogeneous one-dimensional compression
,”
Phys. Fluids
6
,
1052
(
1994
).
15.
L.
Jacquin
,
C.
Cambon
, and
E.
Blin
, “
Turbulence amplification by a shock wave and rapid distortion theory
,”
Phys. Fluids
5
,
2539
(
1993
).
16.
T.
Kitamura
,
K.
Nagata
,
Y.
Sakai
,
A.
Sasoh
, and
Y.
Ito
, “
Rapid distortion theory analysis on the interaction between homogeneous turbulence and a planar shock wave
,”
J. Fluid Mech.
802
,
108
(
2016
).
17.
J.
Keller
and
W.
Merzkirch
, “
Interaction of a normal shock wave with a compressible turbulent flow
,”
Exp. Fluids
8
,
241
(
1990
).
18.
J. H.
Agui
,
G.
Briassulis
, and
Y.
Andreopoulos
, “
Studies of interactions of a propagating shock wave with decaying grid turbulence: Velocity and vorticity fields
,”
J. Fluid Mech.
524
,
143
(
2005
).
19.
T.
Kitamura
,
K.
Nagata
,
Y.
Sakai
,
A.
Sasoh
, and
Y.
Ito
, “
Changes in divergence-free grid turbulence interacting with a weak spherical shock wave
,”
Phys. Fluids
29
,
065114
(
2017
).
20.
S.
Lee
,
S. K.
Lele
, and
P.
Moin
, “
Direct numerical simulation of isotropic turbulence interacting with a weak shock wave
,”
J. Fluid Mech.
251
,
533
(
1993
).
21.
J.
Larsson
,
I.
Bermejo-Moreno
, and
S. K.
Lele
, “
Reynolds- and Mach-number effects in canonical shock-turbulence interaction
,”
J. Fluid Mech.
717
,
293
(
2013
).
22.
R.
Boukharfane
,
Z.
Bouali
, and
A.
Mura
, “
Evolution of scalar and velocity dynamics in planar shock-turbulence interaction
,”
Shock Waves
28
,
1117
(
2018
).
23.
K.
Tanaka
,
T.
Watanabe
,
K.
Nagata
,
A.
Sasoh
,
Y.
Sakai
, and
T.
Hayase
, “
Amplification and attenuation of shock wave strength caused by homogeneous isotropic turbulence
,”
Phys. Fluids
30
,
035105
(
2018
).
24.
J.
Kim
,
A.
Sasoh
, and
A.
Matsuda
, “
Modulations of a weak shock wave through a turbulent slit jet
,”
Shock Waves
20
,
339
(
2010
).
25.
A.
Sasoh
,
T.
Harasaki
,
T.
Kitamura
,
D.
Takagi
,
S.
Ito
,
A.
Matsuda
,
K.
Nagata
, and
Y.
Sakai
, “
Statistical behavior of post-shock overpressure past grid turbulence
,”
Shock Waves
24
,
489
(
2014
).
26.
K.
Inokuma
,
T.
Watanabe
,
K.
Nagata
, and
Y.
Sakai
, “
Statistical properties of spherical shock waves propagating through grid turbulence, turbulent cylinder wake, and laminar flow
,”
Phys. Scr.
94
,
044004
(
2019
).
27.
K.
Aruga
,
K.
Inokuma
,
T.
Watanabe
,
K.
Nagata
, and
Y.
Sakai
, “
Experimental investigation of interactions between turbulent cylinder wake and spherical shock wave
,”
Phys. Fluids
32
,
016101
(
2020
).
28.
T.
Tamba
,
G.
Fukushima
,
M.
Kayumi
,
A.
Iwakawa
, and
A.
Sasoh
, “
Experimental investigation of the interaction of a weak planar shock with grid turbulence in a counter-driver shock tube
,”
Phys. Rev. Fluids
4
,
073401
(
2019
).
29.
K.
Tanaka
,
T.
Watanabe
, and
K.
Nagata
, “
Statistical analysis of deformation of a shock wave propagating in a local turbulent region
,”
Phys. Fluids
32
,
096107
(
2020
).
30.
A. D.
Pierce
, “
Statistical theory of atmospheric turbulence effects on sonic-boom rise times
,”
J. Acoust. Soc. Am.
49
,
906
(
1971
).
31.
G.
Fukushima
,
J.
Wei
,
S.
Ogawa
,
J.
Hagiwara
,
Y.
Nakamura
, and
A.
Sasoh
, “
Losing the shock wave front profile due to interaction with turbulence
,”
Fluid Dyn. Res.
53
,
025504
(
2021
).
32.
K.
Inokuma
,
T.
Watanabe
,
K.
Nagata
,
A.
Sasoh
, and
Y.
Sakai
, “
Finite response time of shock wave modulation by turbulence
,”
Phys. Fluids
29
,
51701
(
2017
).
33.
K.
Inokuma
,
T.
Watanabe
,
K.
Nagata
, and
Y.
Sakai
, “
Statistics of overpressure fluctuations behind a weak shock wave interacting with turbulence
,”
Phys. Fluids
31
,
085119
(
2019
).
34.
G. B.
Whitham
, “
A new approach to problems of shock dynamics Part I. Two-dimensional problems
,”
J. Fluid Mech.
2
,
145
(
1957
).
35.
J.
Larsson
and
S. K.
Lele
, “
Direct numerical simulation of canonical shock/turbulence interaction
,”
Phys. Fluids
21
,
126101
(
2009
).
36.
G.
Fukushima
,
S.
Ogawa
,
J.
Wei
,
Y.
Nakamura
, and
A.
Sasoh
, “
Impacts of grid turbulence on the side projection of planar shock waves
,”
Shock Waves
31
,
101
(
2021
).
37.
C.
Dopazo
,
J.
Martín
, and
J.
Hierro
, “
Local geometry of isoscalar surfaces
,”
Phys. Rev. E
76
,
056316
(
2007
).
38.
M.
Wolf
,
B.
Lüthi
,
M.
Holzner
,
D.
Krug
,
W.
Kinzelbach
, and
A.
Tsinober
, “
Investigations on the local entrainment velocity in a turbulent jet
,”
Phys. Fluids
24
,
105110
(
2012
).
39.
M.
Hayashi
,
T.
Watanabe
, and
K.
Nagata
, “
The relation between shearing motions and the turbulent/non-turbulent interface in a turbulent planar jet
,”
Phys. Fluids
33
,
055126
(
2021
).
40.
R.
Jahanbakhshi
and
C. K.
Madnia
, “
Entrainment in a compressible turbulent shear layer
,”
J. Fluid Mech.
797
,
564
(
2016
).
41.
T.
Watanabe
,
C. B.
da Silva
,
K.
Nagata
, and
Y.
Sakai
, “
Geometrical aspects of turbulent/non-turbulent interfaces with and without mean shear
,”
Phys. Fluids
29
,
085105
(
2017
).
42.
C. B.
da Silva
and
R. R.
Taveira
, “
The thickness of the turbulent/nonturbulent interface is equal to the radius of the large vorticity structures near the edge of the shear layer
,”
Phys. Fluids
22
,
121702
(
2010
).
43.
H. S.
Ribner
,
P. J.
Morris
, and
W. H.
Chu
, “
Laboratory simulation of development of superbooms by atmospheric turbulence
,”
J. Acoust. Soc. Am.
53
,
926
(
1973
).
44.
P.
Holmes
,
J. L.
Lumley
,
G.
Berkooz
, and
C. W.
Rowley
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
(
Cambridge University Press
,
2012
).
45.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
(
2010
).
46.
O.
Terashima
,
Y.
Sakai
, and
Y.
Ito
, “
Measurement of fluctuating temperature and POD analysis of eigenmodes in a heated planar jet
,”
Exp. Therm. Fluid Sci.
92
,
113
(
2018
).
47.
M.
Takahashi
,
R.
Fukui
,
K.
Tsujimoto
,
T.
Ando
, and
T.
Shakouchi
, “
Helical structures in a temporally developing round jet in the developed state
,”
Flow, Turbul. Combust.
111
,
59
79
(
2023
).
48.
K.
Takamure
,
Y.
Ito
,
Y.
Sakai
,
K.
Iwano
, and
T.
Hayase
, “
Momentum transport process in the quasi self-similar region of free shear mixing layer
,”
Phys. Fluids
30
,
015109
(
2018
).
49.
T.
Akao
,
T.
Watanabe
, and
K.
Nagata
, “
Vertical confinement effects on a fully developed turbulent shear layer
,”
Phys. Fluids
34
,
055129
(
2022
).
50.
Z.
Huahai
,
J.
Longfei
,
F.
Shaotong
,
X.
Xing
, and
W.
Limin
, “
Vortex shedding analysis of flows past forced-oscillation cylinder with dynamic mode decomposition
,”
Phys. Fluids
35
,
053618
(
2023
).
51.
A.
Cimarelli
,
G.
Cocconi
,
B.
Frohnapfel
, and
E.
De Angelis
, “
Spectral enstrophy budget in a shear-less flow with turbulent/non-turbulent interface
,”
Phys. Fluids
27
,
125106
(
2015
).
52.
T. S.
Silva
,
M.
Zecchetto
, and
C. B.
da Silva
, “
The scaling of the turbulent/non-turbulent interface at high Reynolds numbers
,”
J. Fluid Mech.
843
,
156
(
2018
).
53.
M. R.
Petersen
and
D.
Livescu
, “
Forcing for statistically stationary compressible isotropic turbulence
,”
Phys. Fluids
22
,
116101
(
2010
).
54.
R.
Nagata
,
T.
Watanabe
, and
K.
Nagata
, “
Turbulent/non-turbulent interfaces in temporally evolving compressible planar jets
,”
Phys. Fluids
30
,
105109
(
2018
).
55.
Y.
Tai
,
T.
Watanabe
, and
K.
Nagata
, “
Implicit large eddy simulation of passive scalar transfer in compressible planar jet
,”
Int. J. Numer. Methods Fluids
93
,
1183
(
2021
).
56.
G. B.
Whitham
, “
A new approach to problems of shock dynamics Part 2. Three-dimensional problems
,”
J. Fluid Mech.
5
,
369
(
1959
).
57.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
58.
Y.
Zheng
,
K.
Nagata
, and
T.
Watanabe
, “
Energy dissipation and enstrophy production/destruction at very low Reynolds numbers in the final stage of the transition period of decay in grid turbulence
,”
Phys. Fluids
33
,
035147
(
2021
).
59.
S.
Kobayashi
,
Differential Geometry of Curves and Surfaces
(
Springer
,
2019
).
60.
O.
Zeman
, “
On the decay of compressible isotropic turbulence
,”
Phys. Fluids
3
,
951
(
1991
).
61.
C. B.
da Silva
,
J. C. R.
Hunt
,
I.
Eames
, and
J.
Westerweel
, “
Interfacial layers between regions of different turbulence intensity
,”
Annu. Rev. Fluid Mech.
46
,
567
(
2014
).
62.
T.
Watanabe
,
C. B.
da Silva
, and
K.
Nagata
, “
Non-dimensional energy dissipation rate near the turbulent/non-turbulent interfacial layer in free shear flows and shear free turbulence
,”
J. Fluid Mech.
875
,
321
(
2019
).
63.
T.
Watanabe
,
C. B.
da Silva
, and
K.
Nagata
, “
Scale-by-scale kinetic energy budget near the turbulent/nonturbulent interface
,”
Phys. Rev. Fluids
5
,
124610
(
2020
).
64.
G.
Whitham
, “
On the propagation of shock waves through regions of non-uniform area or flow
,”
J. Fluid Mech.
4
,
337
(
1958
).
You do not currently have access to this content.