The 10 and 14-moment maximum-entropy methods are applied to the study of high-Mach-number non-reacting crossflows past a flat plate at large degrees of rarefaction. The moment solutions are compared to particle-based kinetic solutions, showing a varying degree of accuracy. At a Knudsen number of 0.1, the 10-moment method is able to reproduce the shock layer, while it fails to predict the low-density wake region, due to the lack of a heat flux. Conversely, the 14-moment method results in accurate predictions of both regions. At a Knudsen number of 1, the 10-moment method produces unphysical results in both the shock layer and in the wake. The 14-moment method also shows a reduced accuracy, but manages to predict a reasonable shock region, free of unphysical sub-shocks and is in qualitative agreement with the kinetic solution. Accuracy is partially lost in the wake, where the 14-moment method predicts a thin unphysical high-density layer, concentrated on the centerline. An analysis of the velocity distribution functions (VDF) indicates strongly non-Maxwellian shapes and the presence of distinct particle populations, in the wake, crossing each other at the centerline. The particle-based and the 14-moment method VDFs are in qualitative agreement.

1.
A. J.
Lofthouse
,
I. D.
Boyd
, and
M. J.
Wright
, “
Effects of continuum breakdown on hypersonic aerothermodynamics
,”
Phys. Fluids
19
,
027105
(
2007
).
2.
A.
Rebrov
, “
Free jets in vacuum technologies
,”
J. Vac. Sci. Technol., A
19
,
1679
1687
(
2001
).
3.
J. H.
Ferziger
and
H. G.
Kaper
,
Mathematical Theory of Transport Processes in Gases
(
North-Holland Publishing Company
,
1972
).
4.
E.
Josyula
and
J.
Burt
, “
Review of rarefied gas effects in hypersonic applications
,”
Technical Report No. RTO-EN-AVT-194
(
Air Force Research Lab Wright-Patterson
,
2011
).
5.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon Press
,
1994
).
6.
L.
Mieussens
, “
Discrete-velocity models and numerical schemes for the Boltzmann–BGK equation in plane and axisymmetric geometries
,”
J. Comput. Phys.
162
,
429
466
(
2000
).
7.
V.
Aristov
,
I.
Voronich
, and
S.
Zabelok
, “
Direct methods for solving the Boltzmann equations: Comparisons with direct simulation Monte Carlo and possibilities
,”
Phys. Fluids
31
,
097106
(
2019
).
8.
S.
Kim
,
H.
Gorji
, and
E.
Jun
, “
Critical assessment of various particle Fokker–Planck models for monatomic rarefied gas flows
,”
Phys. Fluids
35
,
046117
(
2023
).
9.
A.
Frezzotti
,
G. P.
Ghiroldi
, and
L.
Gibelli
, “
Solving the Boltzmann equation on GPUs
,”
Comput. Phys. Commun.
182
,
2445
2453
(
2011
).
10.
M.
Torrilhon
, “
Modeling nonequilibrium gas flow based on moment equations
,”
Annu. Rev. Fluid Mech.
48
,
429
458
(
2016
).
11.
H.
Grad
, “
On the kinetic theory of rarefied gases
,”
Commun. Pure Appl. Math.
2
,
331
407
(
1949
).
12.
H.
Struchtrup
and
M.
Torrilhon
, “
Regularization of Grad's 13 moment equations: Derivation and linear analysis
,”
Phys. Fluids
15
,
2668
2680
(
2003
).
13.
Z.
Cai
,
Y.
Fan
, and
R.
Li
, “
Globally hyperbolic regularization of Grad's moment system
,”
Commun. Pure Appl. Math.
67
,
464
518
(
2014
).
14.
R. O.
Fox
, “
Higher-order quadrature-based moment methods for kinetic equations
,”
J. Comput. Phys.
228
,
7771
7791
(
2009
).
15.
H.
Struchtrup
,
Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory
(
Springer Science & Business Media
,
2005
).
16.
I.
Müller
and
T.
Ruggeri
,
Extended Thermodynamics
(
Springer-Verlag
,
1993
).
17.
C. D.
Levermore
, “
Moment closure hierarchies for kinetic theories
,”
J. Stat. Phys.
83
,
1021
1065
(
1996
).
18.
F.
Forgues
,
L.
Ivan
,
A.
Trottier
, and
J. G.
McDonald
, “
A Gaussian moment method for polydisperse multiphase flow modelling
,”
J. Comput. Phys.
398
,
108839
(
2019
).
19.
S.
Boccelli
,
W.
Kaufmann
,
T. E.
Magin
, and
J. G.
McDonald
, “
Numerical simulation of rarefied supersonic flows using a fourth-order maximum-entropy moment method with interpolative closure
,” (unpublished).
20.
V.
Jayaraman
,
Y.
Liu
, and
M.
Panesi
, “
Multi-group maximum entropy model for translational non-equilibrium
,” AIAA Paper No. 2017-4024,
2017
.
21.
V.
Romano
, “
2D simulation of a silicon MESFET with a nonparabolic hydrodynamical model based on the maximum entropy principle
,”
J. Comput. Phys.
176
,
70
92
(
2002
).
22.
P. L.
Bhatnagar
,
E. P.
Gross
, and
M.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
,
511
(
1954
).
23.
M.
Gallis
and
J.
Torczynski
, “
The application of the BGK model in particle simulations
,” AIAA Paper No. 2000-2360,
2000
.
24.
M.
Macrossan
, “
A particle simulation method for the BGK equation
,”
AIP Conf. Proc.
585
,
426
433
(
2001
).
25.
W.
Dreyer
, “
Maximisation of the entropy in non-equilibrium
,”
J. Phys. A: Math. Gen.
20
,
6505
(
1987
).
26.
J.
McDonald
and
C.
Groth
, “
Numerical modeling of micron-scale flows using the Gaussian moment closure
,” AIAA Paper No. 2005-5035,
2005
.
27.
S.
Boccelli
,
F.
Giroux
,
T. E.
Magin
,
C.
Groth
, and
J. G.
McDonald
, “
A 14-moment maximum-entropy description of electrons in crossed electric and magnetic fields
,”
Phys. Plasmas
27
,
123506
(
2020
).
28.
S.
Boccelli
,
F.
Giroux
, and
J. G.
McDonald
, “
A gallery of maximum-entropy distributions: 14 and 21 moments
,” (unpublished).
29.
J.
McDonald
and
M.
Torrilhon
, “
Affordable robust moment closures for CFD based on the maximum-entropy hierarchy
,”
J. Comput. Phys.
251
,
500
523
(
2013
).
30.
R. P.
Schaerer
,
P.
Bansal
, and
M.
Torrilhon
, “
Efficient algorithms and implementations of entropy-based moment closures for rarefied gases
,”
J. Comput. Phys.
340
,
138
159
(
2017
).
31.
C.
Zheng
,
W.
Yang
, and
S.
Chen
, “
Stabilizing the maximal entropy moment method for rarefied gas dynamics at single-precision
,” arXiv:2303.02898 (
2023
).
32.
Notice that a possible strategy to assess the accuracy of this approximation, in the context of the present simulations, could consist in computing the exact maximum-entropy closing moments, from a converged approximated solution, and comparing them to the approximation itself.
33.
M.
Junk
and
A.
Unterreiter
, “
Maximum entropy moment systems and Galilean invariance
,”
Continuum Mech. Thermodyn.
14
,
563
576
(
2002
).
34.
S.
Taniguchi
and
T.
Ruggeri
, “
On the sub-shock formation in extended thermodynamics
,”
Int. J. Non-Linear Mech.
99
,
69
78
(
2018
).
35.
P.
Parodi
,
S.
Boccelli
,
F.
Bariselli
,
D. L.
Quang
,
G.
Lapenta
, and
T.
Magin
, “
PIC-MCC characterization of expanding plasma plumes for a low-density hypersonic aerodynamics facility
,” in
APS Annual Gaseous Electronics Meeting Abstracts
(
APS
,
2021
), p.
ET44
-
005
.
36.
E. F.
Toro
,
B.
Saggiorato
,
S.
Tokareva
, and
A.
Hidalgo
, “
Low-dissipation centred schemes for hyperbolic equations in conservative and non-conservative form
,”
J. Comput. Phys.
416
,
109545
(
2020
).
37.
B.
Van Leer
, “
Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method
,”
J. Comput. Phys.
32
,
101
136
(
1979
).
38.
E. F.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
(
Springer Science & Business Media
,
2013
).
39.
S.
Boccelli
, “
Hyper2d: A finite-volume solver for hyperbolic equations and non-equilibrium flows
,” (unpublished).
40.
O. I.
Rovenskaya
, “
Subsonic rarefied gas flow over a rectangular cylinder
,”
Comput. Math. Math. Phys.
62
,
1928
1941
(
2022
).
41.
E.
Muntz
and
L.
Harnett
, “
Molecular velocity distribution function measurements in a normal shock wave
,”
Phys. Fluids
12
,
2027
2035
(
1969
).
42.
J. G.
McDonald
,
Extended Fluid-Dynamic Modelling for Numerical Solution of Micro-Scale Flows
(
University of Toronto
,
2011
).
43.
J. G.
McDonald
and
C.
Groth
, “
Extended fluid dynamic model for micron-scale flows based on gaussian moment closure
,” AIAA Paper No. 2008-691,
2008
.
44.
T.
Holtz
and
E.
Muntz
, “
Molecular velocity distribution functions in an argon normal shock wave at Mach number 7
,”
Phys. Fluids
26
,
2425
2436
(
1983
).
45.
A.
Munafò
,
J. R.
Haack
,
I. M.
Gamba
, and
T. E.
Magin
, “
A spectral-Lagrangian Boltzmann solver for a multi-energy level gas
,”
J. Comput. Phys.
264
,
152
176
(
2014
).
46.
F.
Bariselli
,
S.
Boccelli
,
T.
Magin
,
A.
Frezzotti
, and
A.
Hubin
, “
Aerothermodynamic modelling of meteor entry flows in the rarefied regime
,” AIAA Paper No. 2018-4180,
2018
.
47.
F.
Forgues
and
J. G.
McDonald
, “
Higher-order moment models for laminar multiphase flows with accurate particle-stream crossing
,”
Int. J. Multiphase Flow
114
,
28
38
(
2019
).
48.
O.
Desjardins
,
R. O.
Fox
, and
P.
Villedieu
, “
A quadrature-based moment method for dilute fluid-particle flows
,”
J. Comput. Phys.
227
,
2514
2539
(
2008
).
49.
R. G.
Patel
,
O.
Desjardins
, and
R. O.
Fox
, “
Three-dimensional conditional hyperbolic quadrature method of moments
,”
J. Comput. Phys.: X
1
,
100006
(
2019
).
50.
F.
Giroux
and
J. G.
McDonald
, “
An approximation for the twenty-one-moment maximum-entropy model of rarefied gas dynamics
,”
Int. J. Comput. Fluid Dyn.
35
,
632
652
(
2021
).
You do not currently have access to this content.