Low-frequency, many-minute-period horizontal surfzone eddies are an important mechanism for the dispersion of material, transporting larvae, pollutants, sediment, and swimmers both across and along the nearshore. Previous numerical, laboratory, and field observations on alongshore uniform bathymetry with no or roughly uniform mean background flows suggest that the low-frequency eddies may be the result of a two-dimensional inverse energy cascade that transfers energy from relatively small spatial-scale vorticity injected by depth limited breaking waves to larger and larger spatial scales. Here, using remotely sensed high-spatial resolution estimates of currents, those results are extended to surfzones with strong complex mean circulation patterns [flows O(1 m/s)] owing to nonuniform bathymetry. Similar to previous results, wavenumber spectra and second-order structure functions calculated from the observations are consistent with a two-dimensional inverse energy cascade. The size of the largest eddies is shown to depend on the surfzone width and the spatial scales of the mean currents. Third-order structure functions also are consistent with an inverse cascade for spatial scales greater than ∼50 m. At smaller scales, the third-order structure functions suggest a mixture of inverse and forward cascades.

1.
Alexakis
,
A.
, “
Two-dimensional behavior of three-dimensional magnetohydrodynamic flow with a strong guiding field
,”
Phys. Rev. E
84
(
5
),
056330
(
2011
).
2.
Alexakis
,
A.
and
Biferale
,
L.
, “
Cascades and transitions in turbulent flows
,”
Phys. Rep.
767–769
,
1
101
(
2018
).
3.
Baker
,
C.
, “
Surfzone vorticity dynamics in a directional wave basin
,” Ph.D. dissertation (
University of Washington
,
2023
).
4.
Baker,
C.
,
Moulton,
M.
,
Chickadel,
C.
,
Nuss,
E.
,
Palmsten,
M.
, and
Brodie,
K.
, “Two-dimensional inverse energy cascade in a laboratory surf zone for varying wave directional spread,” Phys. Fluids (submitted).
5.
Balwada
,
D.
,
Xie
,
J.
,
Marino
,
R.
, and
Feraco
,
F.
, “
Direct observational evidence of an oceanic dual kinetic energy cascade and its seasonality
,”
Sci. Adv.
8
(
41
),
1
48
(
2022
).
6.
Batchelor
,
G.
, “
Computation of the energy spectrum in homogeneous two-dimensional turbulence
,”
Phys. Fluids
12
(
12
),
II-233
(
1969
).
7.
Belmonte
,
A.
,
Goldburg
,
W.
,
Kellay
,
H.
,
Rutgers
,
M.
,
Martin
,
B.
, and
Wu
,
X.
, “
Velocity fluctuations in a turbulent soap film: The third moment in two dimensions
,”
Phys. Fluids
11
(
5
),
1196
1200
(
1999
).
8.
Boffetta
,
G.
,
Celani
,
A.
, and
Vergassola
,
M.
, “
Inverse energy cascade in two-dimensional turbulence: Deviations from Gaussian behavior
,”
Phys. Rev. E
61
(
1
),
R29
(
2000
).
9.
Boffetta
,
G.
and
Musacchio
,
S.
, “
Evidence for the double cascade scenario in two-dimensional turbulence
,”
Phys. Rev. E
82
(
1
),
016307
(
2010
).
10.
Boffetta
,
G.
and
Ecke
,
R.
, “
Two-dimensional turbulence
,”
Annu. Rev. Fluid Mech.
44
(
1
),
427
451
(
2012
).
11.
Bonneton
,
P.
,
Bruneau
,
N.
,
Castelle
,
B.
, and
Marche
,
F.
, “
Large-scale vorticity generation due to dissipating waves in the surf zone
,”
Discrete Contin. Dyn. Syst.-Ser. B
13
(
4
),
729
738
(
2010
).
12.
Bruneau
,
P.
,
Benneton
,
B.
,
Castelle
,
B.
, and
Pedreros
,
R.
, “Modeling rip current circulations and vorticity in a high-energy mesotidal-macrotidal environment,”
J. Geophys. Res.
116,
C07026
, https://doi.org/10.1029/2010JC006693 (2011).
13.
Bühler
,
O.
, “
On the vorticity transport due to dissipating or breaking waves in shallow-water flow
,”
J. Fluid Mech.
407
,
235
263
(
2000
).
14.
Bühler
,
O.
and
Jacobson
,
T.
, “
Wave-driven currents and vortex dynamics on barred beaches
,”
J. Fluid Mech.
449
,
313
339
(
2001
).
15.
Cerbus
,
R.
and
Chakraborty
,
P.
, “
The third-order structure function in two dimensions: The Rashomon effect
,”
Phys. Fluids
29
(
11
),
111110
(
2017
).
16.
Chertkov
,
M.
,
Connaughton
,
C.
,
Kolokolov
,
I.
, and
Lebedev
,
V.
, “
Dynamics of energy condensation in two-dimensional turbulence
,”
Phys. Rev. Lett.
99
(
8
),
084501
(
2007
).
17.
Chickadel
,
C.
,
Holman
,
R.
, and
Freilich
,
M.
, “
An optical technique for the measurement of longshore currents
,”
J. Geophys. Res.
108
(
11
),
3364
, https://doi.org/10.1029/2003jc001774 (
2003
).
18.
Colombi
,
R.
,
Schlüter
,
M.
, and
von Kameke
,
A.
, “
Three dimensional flows beneath a thin layer of 2D turbulence induced by Faraday waves
,”
Exp. Fluids
62
(
1
),
1
13
(
2021
).
19.
De Leo
,
A.
and
Stocchino
,
A.
, “
Evidence of transient energy and enstrophy cascades in tidal flows: A scale to scale analysis
,”
Geophys. Res. Lett.
49
(
10
),
1
13
, https://doi.org/10.1029/2022GL098043 (
2022
).
20.
De Leo
,
A.
and
Stocchino
,
A.
, “
Efficiency of energy and enstrophy transfers in periodical flows
,”
Phys. Fluids
35
(
4
),
046602
(
2023
).
21.
De Wit
,
X.
,
Van Kan
,
A.
, and
Alexakis
,
A.
, “
Bistability of the large-scale dynamics in quasi-two-dimensional turbulence
,”
J. Fluid Mech.
939
,
R2
(
2022
).
22.
Elgar
,
S.
and
Raubenheimer
,
B.
, “
Field evidence of inverse energy cascades in the surfzone
,”
J. Phys. Oceanogr.
50
(
8
),
2315
2321
(
2020
).
23.
Elgar
,
S.
and
Raubenheimer
,
B.
, “
Surf Zone Vorticity and Advection (RODSEX) Field Experiment
,”
DesignSafe-CI
(
2019
).
24.
Feddersen
,
F.
, “
The generation of surfzone eddies in a strong alongshore current
,”
J. Phys. Oceanogr.
44
(
2
),
600
617
(
2014
).
25.
Feddersen
,
F.
and
Guza
,
R.
, “
Observations of nearshore circulation: Alongshore uniformity
,”
J. Geophys. Res.
108
,
6-1
6-10
, https://doi.org/10.1029/2001JC001293 (
2003
).
26.
Filatov
,
S.
,
Parfenyev
,
V.
,
Vergeles
,
S.
,
Brazhnikov
,
M.
,
Levchenko
,
A.
, and
Lebedev
,
V.
, “
Nonlinear generation of vorticity by surface waves
,”
Phys. Rev. Lett.
116
(
5
),
054501
(
2016
).
27.
Francois
,
N.
,
Xia
,
H.
,
Punzmann
,
H.
,
Ramsden
,
S.
, and
Shats
,
M.
, “
Three-dimensional fluid motion in Faraday waves: Creation of vorticity and generation of two-dimensional turbulence
,”
Phys. Rev. X
4
(
2
),
021021
(
2014
).
28.
Francois
,
N.
,
Xia
,
H.
,
Punzmann
,
H.
, and
Shats
,
M.
, “
Inverse energy cascade and emergence of large coherent vortices in turbulence driven by Faraday waves
,”
Phys. Rev. Lett.
110
(
19
),
194501
(
2013
).
29.
Johnson
,
D.
and
Pattiaratchi
,
C.
, “
Boussinesq modelling of transient rip currents
,”
Coastal Eng.
53
(
5–6
),
419
439
(
2006
).
30.
Kafiabad
,
H.
and
Bartello
,
P.
, “
Balance dynamics in rotating stratified turbulence
,”
J. Fluid Mech.
795
,
914
949
(
2016
).
31.
Kellay
,
H.
and
Goldburg
,
W.
, “
Two-dimensional turbulence: A review of some recent experiments
,”
Rep. Prog. Phys.
65
(
5
),
845
894
(
2002
).
32.
Kraichnan
,
R.
, “
Inertial ranges in two-dimensional turbulence
,”
Phys. Fluids
10
(
7
),
1417
1423
(
1967
).
33.
Leith
,
C.
, “
Diffusion approximation for two-dimensional turbulence
,”
Phys. Fluids
11
(
3
),
671
673
(
1968
).
34.
Lindborg
,
E.
, “
A note on Kolmogorov's third-order structure-function law, the local isotropy
,”
J. Fluid Mech.
326
,
343
356
(
1996
).
35.
Lindborg
,
E.
, “
Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence?
,”
J. Fluid Mech.
388
,
259
288
(
1999
).
36.
Lindborg
,
E.
, “
Third-order structure function relations for quasi-geostrophic turbulence
,”
J. Fluid Mech.
572
,
255
260
(
2007
).
37.
Longuet-Higgins
,
M.
, “
Longshore currents generated by obliquely incident sea waves-1, 2
,”
J. Geophys. Res.
75
(
33
),
6778
6801
, https://doi.org/10.1029/JC075i033p06778 (
1970
).
38.
Longuet-Higgins
,
M.
and
Stewart
,
R.
, “
Radiation stresses in water waves; a physical discussion, with applications
,”
Deep-Sea Res. Oceanogr. Abstr.
11
(
4
),
529
562
(
1964
).
39.
McWilliams
,
J.
, “
Submesoscale currents in the ocean
,”
Proc. R. Soc. London, Ser. A
472
(
2189
),
1
32
(
2016
).
40.
Morize
,
C.
,
Moisy
,
F.
, and
Rabaud
,
M.
, “
Decaying grid-generated turbulence in a rotating tank
,”
Phys. Fluids
17
(
9
),
095105
(
2005
).
41.
Paret
,
J.
and
Tabeling
,
P.
, “
Intermittency in the two-dimensional inverse cascade of energy: Experimental observations
,”
Phys. Fluids
10
(
12
),
3126
3136
(
1998
).
42.
Peregrine
,
H.
, “
Surfzone currents
,”
Comput. Fluid Dyn.
10
,
295
309
(
1998
).
43.
Perkovic
,
D.
,
Lippmann
,
T.
, and
Frasier
,
S.
, “
Longshore surface currents measured by Doppler radar and video PIV techniques
,”
IEEE Trans. Geosci. Remote Sens.
47
(
8
),
2787
2800
(
2009
).
44.
Pouquet
,
A.
,
Marino
,
R.
,
Mininni
,
P.
, and
Rosenberg
,
D.
, “
Dual constant-flux energy cascades to both large scales and small scales
,”
Phys. Fluids
29
(
11
),
111108
(
2017
).
45.
Shats
,
M.
,
Xia
,
H.
,
Punzmann
,
H.
, and
Falkovich
,
G.
, “
Suppression of turbulence by self-generated and imposed mean flows
,”
Phys. Rev. Lett.
99
(
16
),
164502
(
2007
).
46.
Smith
,
L.
and
Yakhot
,
V.
, “
Bose condensation and small-scale structure generation in a random force driven 2D turbulence
,”
Phys. Rev. Lett.
71
(
3
),
352
355
(
1993
).
47.
Smith
,
L.
and
Yakhot
,
V.
, “
Finite-size effects in forced two-dimensional turbulence
,”
J. Fluid Mech.
274
,
115
138
(
1994
).
48.
Spydell
,
M.
, “
The suppression of surfzone cross-shore mixing by alongshore currents
,”
Geophys. Res. Lett.
43
(
18
),
9781
9790
, https://doi.org/10.1002/2016GL070626 (
2016
).
49.
Spydell
,
M.
and
Feddersen
,
F.
, “
Lagrangian drifter dispersion in the surf zone: Directionally spread, normally incident waves
,”
J. Phys. Oceanogr.
39
(
4
),
809
830
(
2009
).
50.
Spydell
,
M.
,
Feddersen
,
F.
,
Guza
,
R.
, and
Schmidt
,
W.
, “
Observing surf-zone dispersion with drifters
,”
J. Phys. Oceanogr.
37
(
12
),
2920
2939
(
2007
).
51.
Suarez
,
L.
,
Cienfuegos
,
R.
,
Michallet
,
H.
, and
Barthélemy
,
E.
, “
Wave forced vorticity and dissipation scaling on a rip channeled beach
,”
Eur. J. Mech./B Fluids
101
,
149
166
(
2023
).
52.
Sveen
,
J.
and
Cowen
,
E.
, “
Quantitative imaging techniques and their application to wavy flows
,” in
PIV and Water Waves
, edited by
J.
Grue
,
P.
Liu
, and
G.
Pedersen
(
World Scientific
,
2004
).
53.
Tabeling
,
P.
, “
Two-dimensional turbulence: A physicist approach
,”
Phys. Rep.
362
(
1
),
1
62
(
2002
).
54.
Wei
,
Z.
,
Dalrymple
,
R.
,
Xu
,
M.
,
Garnier
,
R.
, and
Derakhti
,
M.
, “
Short-crested waves in the surf zone
,”
J. Geophys. Res.: Oceans
122
,
4143
, https://doi.org/10.1002/2016JC012485 (
2017
).
55.
Xia
,
H.
and
Francois
,
N.
, “
Two-dimensional turbulence in three-dimensional flows
,”
Phys. Fluids
29
(
11
),
111107
(
2017
).
56.
Xia
,
H.
,
Punzmann
,
H.
,
Falkovich
,
G.
, and
Shats
,
M.
, “
Turbulence-condensate interaction in two dimensions
,”
Phys. Rev. Lett.
101
,
194504
(
2008
).
57.
Xia
,
H.
,
Shats
,
M.
, and
Falkovich
,
G.
, “
Spectrally condensed turbulence in thin layers
,”
Phys. Rev. Lett.
21
,
125101
(
2009
).
58.
Young
,
R.
and
Read
,
P.
, “
Forward and inverse kinetic energy cascades in Jupiter's turbulent weather layer
,”
Nat. Phys.
13
,
1135
1140
(
2017
).
You do not currently have access to this content.