Interactional aerodynamics of a quadcopter in hover is numerically investigated in this study. The main objective is to understand major flow structures associated with unsteady airloads on multirotor aircraft. The overset mesh approach is used to resolve flow structures in unsteady simulation using the flow solver OpenFOAM. The current computational study demonstrates that aerodynamic interaction between quadcopter components strongly affects the rotor wake, generating interesting vortical structures. Multiple rotors in close proximity generate Ω-shaped vortical structures merged from rotor-tip vortices. The fuselage of the current quadcopter deflects the wake flow of the four rotors toward the center of the vehicle. Such interactional aerodynamics, i.e., rotor–rotor and rotor–fuselage interaction, varies the inflow condition of a rotor blade during the rotor revolution. Therefore, the quadcopter experiences unsteady airloads per rotor revolution. Our study indicates that a typical quadcopter would experience 8/rev thrust variations, which are a combined outcome from 4/rev thrust variations on the rotor and 2/rev fluctuations on the fuselage. The current understanding of interactional aerodynamics could help to design reliable and efficient multicopter aircraft.

1.
G.
Throneberry
,
C. M.
Hocut
, and
A.
Abdelkefi
, “
Multi-rotor wake propagation and flow development modeling: A review
,”
Prog. Aerosp. Sci.
127
,
100762
(
2021
).
2.
C.
Russell
,
J.
Jung
,
G.
Willink
, and
B.
Glasner
, “
Wind tunnel and hover performance test results for multicopter UAS vehicles
,”
Technical Report NASA-TM-219758
(
NASA Ames Research Center
,
Moffett Field, CA, United States
,
2018
).
3.
S.
Yoon
,
P.
Ventura Diaz
,
D. D.
Boyd
, Jr.
,
W. M.
Chan
, and
C. R.
Theodore
, “
Computational aerodynamic modeling of small quadcopter vehicles
,” in
AHS 73rd Annual Forum, Fort Worth
, TX, United States,
2017
.
4.
P. V.
Diaz
and
S.
Yoon
, “
High-fidelity computational aerodynamics of multi-rotor unmanned aerial vehicles
,” AIAA Paper No. 2018-1266,
2018
.
5.
N.
Intaratep
,
W.
Nathan Alexander
,
W. J.
Deveport
,
S. M.
Grace
, and
A.
Dropkin
, “
Experimental study of quadcopter acoustics and performance at static thrust conditions
,” AIAA Paper No. 2016-2873,
2016
.
6.
N. S.
Zawodny
and
D. D.
Boyd
, “
Investigation of rotor-airframe interaction noise associated with small-scale rotary-wing unmanned aircraft systems
,”
J. Am. Helicopter Soc.
65
,
1
17
(
2020
).
7.
G.
Sheen
,
M.
Yin
,
X.
Wang
, and
H.
Baoyin
, “
Aerodynamic interference and unsteady loads for a hovering intermeshing rotor
,”
Phys. Fluids
34
,
063606
(
2022
).
8.
Y.
Wu
,
M. J.
Kingan
, and
S. T.
Go
, “
Propeller-strut interaction tone noise
,”
Phys. Fluids
34
,
055116
(
2022
).
9.
G. M.
Hoffmann
,
H.
Huang
,
S. L.
Waslander
, and
C. J.
Tomlin
, “
Precision flight control for a multi-vehicle quadrotor helicopter testbed
,”
Control Eng. Practice
19
,
1023
1036
(
2011
).
10.
Z.
Ning
, “
Experimental investigations on the aerodynamic and aeroacoustic characteristics of small UAS propellers
,” Ph.D. thesis (
Iowa State University
,
2018
).
11.
S.
Lee
,
S.
Chae
,
S. Y.
Woo
,
J.
Jang
, and
J.
Kim
, “
Effects of rotor-rotor interaction on the wake structure and thrust generation of a quadrotor unmanned aerial vehicle
,”
IEEE Access
9
,
85995
86016
(
2021
).
12.
H.
Lee
and
D. J.
Lee
, “
Rotor interactional effects on aerodynamic and noise characteristics of a small multirotor unmanned aerial vehicle
,”
Phys. Fluids
32
,
047107
(
2020
).
13.
E. J.
Alvarez
and
A.
Ning
, “
High-fidelity modeling of multirotor aerodynamic interactions for aircraft design
,”
AIAA J.
58
,
4385
4400
(
2020
).
14.
J.
Sagaga
and
S.
Lee
, “
Acoustic predictions for the side-by-side air taxi rotor in hover
,” in
AHS 77th Annual Forum, Virtual Event
,
2021
.
15.
M.
Potsdam
and
R.
Strawn
, “
CFD Simulations of tiltrotor configurations in hover
,”
J. Am. Helicopter Soc.
50
,
82
94
(
2005
).
16.
N. M.
Chaderjian
, “
Advances in rotor performance and turbulent wake simulation using DES and adaptive mesh refinement
,” in
ICCFD7, Big Island
, HI, United States,
2012
.
17.
R. C.
Strawn
and
M. J.
Djomehri
, “
Computational modeling of hovering rotor and wake aerodynamics
,”
J. Aircraft
39
,
786
793
(
2002
).
18.
J. Y.
Hwang
,
M. K.
Jung
, and
O. J.
Kwon
, “
Numerical study of aerodynamic performance of a multirotor unmanned-aerial-vehicle configuration
,”
J. Aircraft
52
,
839
846
(
2015
).
19.
C.
Paz
,
E.
Suárez
,
C.
Gil
, and
J.
Vence
, “
Assessment of the methodology for the CFD simulation of the flight of a quadcopter UAV
,”
J. Wind Eng. Ind. Aerodyn.
218
,
104776
(
2021
).
20.
M.
Carreño Ruiz
,
M.
Scanavino
,
D.
D'Ambrosio
,
G.
Guglieri
, and
A.
Vilardi
, “
Experimental and numerical analysis of hovering multicopter performance in low-Reynolds number conditions
,”
Aerosp. Sci. Technol.
128
,
107777
(
2022
).
21.
A. D.
Thai
,
S. M.
Grace
, and
R.
Jain
, “
Effect of turbulence modeling selection within Helios for small quadcopter aerodynamics
,”
J. Aircraft
59
,
927
945
(
2022
).
22.
H.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Computers Phys.
12
,
620
631
(
1998
).
23.
H.
Jasak
, “
Error analysis and estimation for the finite volume method with applications to fluid flows
,” Ph.D. thesis (
Imperial College London
,
1996
).
24.
J.
Katavić
, “
Development of automatic fringe assembly algorithm for overset meshes in foam-extend software
,” Master's thesis (
University of Zagreb
,
2018
).
25.
I.
Senjanović
,
J.
Katavić
,
V.
Vukčević
,
N.
Vladimir
, and
H.
Jasak
, “
Launching of ships from horizontal berth by tipping tables – CFD simulation of wave generation
,”
Eng. Struct.
210
,
110343
(
2020
).
26.
Pointwise, lnc
., see https://www.pointwise.com for “
Pointwise
,” V18.2R2.
27.
P. R.
Spalart
and
S. R.
Allmaras
, “
One-equation turbulence model for aerodynamic flows
,” La Recherche Aérospatiale (
1994
), pp.
5
21
.
28.
B.
Aupoix
and
P. R.
Spalart
, “
Extensions of the Spalart–Allmaras turbulence model to account for wall roughness
,”
Int. J. Heat Fluid Flow
24
,
454
462
(
2003
).
29.
J.
Dacles-Mariani
,
Z.
Gregory G
,
J. S.
Chow
, and
P.
Bradshaw
, “
Numerical/Experimental Study of a wingtip vortex in the near field
,”
AIAA J.
33
,
1561
1568
(
1995
).
30.
R. I.
Issa
,
A. D.
Gosman
, and
A. P.
Watkins
, “
The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme
,”
J. Comput. Phys.
62
,
66
82
(
1986
).
31.
C. J.
Greenshields
and
H. G.
Weller
,
Note on Computational Fluid Dynamics: General Principles
(
CFD Direct Limited
,
2022
).
32.
P. R.
Spalart
and
C. L.
Rumsey
, “
Effective inflow conditions for turbulence models in aerodynamic calculations
,”
AIAA J.
45
,
2544
2553
(
2007
).
You do not currently have access to this content.