A new methodology of turbulence modeling is proposed by combining a statistical theory [T. Ariki, Phys. Fluids 31, 065104 (2019)] and the Reynolds-stress-root method [T. Ariki, Phys. Rev. E 92, 053010 (2015)], aiming at realizing practical turbulence model of wider applicability with the help of theoretical support. The resultant model integrates, at the same time, the following five features: coordinate covariance, realizability condition, near-wall behavior, history effect, and streamline curvature effect, which are all key ingredients to build up better turbulence model mimicking realistic behaviors. Numerical assessments of the model are conducted for homogeneous shear flow, channel flow, flow in a rotating pipe, and flow between concentric annuli, all of which show reasonable agreement with direct numerical simulations and experiments.

1.
R. H.
Kraichnan
, “
Structure of isotropic turbulence at very high Reynolds numbers
,”
J. Fluid. Mech.
5
,
497
(
1959
).
2.
R. H.
Kraichnan
, “
Direct-interaction approximation for shear and thermally-driven turbulence
,”
Phys. Fluids.
7
,
1048
(
1964
).
3.
D. C.
Leslie
,
Developments in the Theory of Turbulence
(
Oxford University Press
,
1973
).
4.
K.
Hanjalić
and
B. E.
Launder
, “
A Reynolds stress model of turbulence and its application to thin shear flows
,”
J. Fluid. Mech
52
,
609
(
1972
).
5.
A.
Yoshizawa
, “
Statistical analysis of the deviation of the Reynolds stress from its eddy-viscosity representation
,”
Phys. Fluids.
27
,
1377
(
1984
).
6.
A.
Yoshizawa
, “
Statistical analysis of the anisotropy of scalar diffusion in turbulent shear flows
,”
Phys. Fluids.
28
,
3226
(
1985
).
7.
F.
Hamba
, “
Statistical analysis of chemically reacting passive scalars in turbulent shear flows
,”
J. Phys. Soc. Jpn.
56
,
79
(
1987
).
8.
V. M.
Yakhot
and
S. A.
Orszag
, “
Renormalization group analysis of turbulence. I. Basic theory
,”
J. Sci. Comput.
1
,
3
(
1986
).
9.
T.
Ariki
, “
Constitutive theory of inhomogeneous turbulent flow based on two-scale Lagrangian formalism
,”
Phys. Fluids
31
,
065104
(
2019
).
10.
Y.
Kaneda
, “
Renormalized expansions in the theory of turbulence with the use of the Lagrangian position function
,”
J. Fluid. Mech.
107
,
131
(
1981
).
11.
V. N.
Kolmogorov
, “
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
,”
Dokl. Akad. Nauk SSSR
30
,
299
(
1941
).
12.
C. G.
Speziale
, “
Invariance of turbulent closure models
,”
Phys. Fluids
22
,
1033
(
1979
).
13.
T.
Ariki
, “
Covariance of fluid-turbulence theory
,”
Phys. Rev. E
91
,
053001
(
2015
).
14.
T.
Ariki
, “
Mean-Lagrangian formalism and covariance of fluid turbulence
,”
Phys. Rev. E
95
,
053102
(
2017
).
15.
T.-H.
Shih
,
J.
Zhu
, and
J. L.
Lumley
, “
A new Reynolds stress algebraic equation model
,”
Comput. Methods Appl. Mech. Eng.
125
,
287
(
1995
).
16.
T.
Craft
,
B. E.
Launder
, and
K.
Suga
, “
Structure of isotropic turbulence at very high Reynolds numbers
,”
Int. J. Heat Fluid Flow
17
,
108
(
1996
).
17.
C. G.
Speziale
, “
On nonlinear k- and k-ε models of turbulence
,”
J. Mech. Fluids
178
,
459
(
1987
).
18.
T.
Ariki
, “
Turbulence constitutive modeling of the square root of the Reynolds stress
,”
Phys. Rev. E
92
,
053010
(
2015
).
19.
K.
Inagaki
,
T.
Ariki
, and
F.
Hamba
, “
Higher-order realizable algebraic Reynolds stress modeling based on the square root tensor
,”
Phys. Rev. Fluids
4
,
114601
(
2019
).
20.
U.
Schumann
, “
Realizability of Reynolds-stress turbulence model
,”
Phys. Fluids
20
,
721
(
1977
).
21.
C. G.
Speziale
,
B. A.
Younis
, and
S. A.
Berger
, “
Analysis and modeling of turbulent flow in an axially-rotating pipe
,”
J. Fluid Mech.
407
,
1
(
2000
).
22.
K.
Abe
,
T.
Kondoh
, and
Y.
Nagano
, “
A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows
,”
Int. J. Heat Mass Transf.
37
,
139
(
1994
).
23.
S.
Kida
and
M.
Tanaka
, “
Dynamics of vortical structures in a homogeneous shear flow
,”
J. Fluid Mech.
274
,
43
(
1994
).
24.
R. D.
Moser
,
J.
Kim
, and
N. N.
Mansour
, “
Direct numerical simulation of turbulent channel flow up to
r e τ = 590,”
Phys. Fluids
11
,
943
(
1999
).
25.
F.
Hamba
, “
Realizability for the Reynolds stress in nonlinear eddy-viscosity model of turbulence
,”
J. Phys. Soc. Jpn.
70
,
1565
(
2001
).
26.
D.
Yu
and
S. S.
Girimaji
, “
Direct numerical simulations of homogeneous turbulence subject to periodic shear
,”
J. Fluid. Mech.
566
,
117
(
2006
).
27.
P. E.
Hamlington
and
W. J. A.
Dahm
, “
Reynolds stress closure for nonequilibrium effects in turbulent flows
,”
Phys. Fluids
20
,
115101
(
2008
).
28.
M. K.
Lee
and
R. D.
Moser
, “
Direct numerical simulation of turbulent channel flow up to
r e τ = 5200,”
J. Fluid Mech.
774
,
395
(
2015
).
29.
S.
Imao
,
M.
Itoh
, and
T.
Harada
, “
Turbulent characteristics of the flow in an axially rotating pipe
,”
Int. J. Heat Fluid Flow
17
,
444
(
1996
).
30.
N.
Ashton
,
J.
Davis
, and
C.
Brehm
, “
Assesment of the elliptic blending Reynolds stress model for a rotating turbulent pipe flow using new DNS data
,”
AIAA Aviation 2019 Forum
2966
(
2019
).
31.
M.
Okamoto
and
N.
Shima
, “
Direct numerical simulation of rotating turbulent flows through concentric annuli
,”
Eng. Turbul. Model. Exp.
6
,
217
(
2005
).
32.
R.
Rubinstein
and
J. M.
Barton
, “
Nonlinear Reynolds stress models and the renormalization group
,”
Phys. Fluids A
2
,
1427
(
1990
).
33.
M.
Okamoto
, “
Theoretical investigation of an eddy-viscosity-type representation of the Reynolds stress
,”
J. Phys. Soc. Jpn.
63
,
2102
(
1994
).
34.
F.
Hamba
and
K.
Kanamoto
, “
Analysis of destruction term in transport equation for turbulent energy dissipation rate
,”
Theor. Comput. Fluid Dyn.
33
,
181
(
2019
).
You do not currently have access to this content.