In this work, on the one hand, we continue with the study of the dynamic property of Beltrami flows [R. González, “Dynamics of non-axisymmetric Beltrami flows,” Phys. Fluids 26, 114104 (2014)], extending its scopes to non-stationary flows in the rotating system, which allowed us to classify the rotating waves on the basis of their phase velocities. On the other hand, and in accordance with this classification, we study the resonant triadic interaction of these waves. For this purpose, we use the expansion in a Chandrasekhar–Kendall basis for an infinite tube, in an analogous procedure to the one carried out by Waleffe [“The nature of triad interactions in homogeneous turbulence,” Phys. Fluids A 4, 350–363 (1992)], to study the interaction of plane Beltrami waves. Taking an equilibrium of the resulting non-linear equations for the amplitudes of the waves, we consider their linear and non-linear stability. Regarding their linear stability, we see that unlike plane Beltrami waves, their stability depends not only on the relative helicities but also on an interaction factor that depends on the properties and the co-rotating or counter-rotating character of the interacting waves. On the other hand, for non-linear stability dependent on the same parameters as those of linear stability, we find, for one case of analysis, that there is non-linear instability only for some interactions of two co-rotating waves with a counter-rotating one and we exhibit criteria that are sufficient conditions of non-linear stability or non-linear instability.

1.
R.
González
,
G.
Sarasua
, and
A.
Costa
, “
Kelvin waves with helical Beltrami flow structure
,”
Phys. Fluids
20
,
024106
(
2008
).
2.
R.
González
,
A.
Costa
, and
E. S.
Santini
, “
On a variational principle for Beltrami flows
,”
Phys. Fluids
22
,
074102
(
2010
).
3.
R.
González
and
E. S.
Santini
, “
The dynamics of beltramized flows and its relation with the Kelvin waves
,”
J. Phys.: Conf. Ser.
296
,
012024
(
2011
).
4.
S.
Chandrasekhar
and
P. C.
Kendall
, “
On force-free magnetic fields
,”
Astrophys. J.
126
,
457
(
1957
).
5.
X.
Shan
,
D.
Montgomery
, and
H.
Chen
, “
Nonlinear magnetohydrodynamics by Galerkin-method computation
,”
Phys. Rev. A
44
,
6800
6818
(
1991
).
6.
Z.
Yoshida
, “
Eigenfunction expansions associated with the curl derivatives in cylindrical geometries: Completeness of Chandrasekhar–Kendall eigenfunctions
,”
J. Math. Phys.
33
,
1252
1256
(
1992
).
7.
R.
González
, “
Dynamics of non-axisymmetric Beltrami flows
,”
Phys. Fluids
26
,
114104
(
2014
).
8.
P.
Drazin
and
W.
Reid
,
Hydrodynamic Stability
, Cambridge Monographs on Mechanics (
Cambridge University Press
,
1981
).
9.
R. R.
Kerswell
, “
Secondary instabilities in rapidly rotating fluids: Inertial wave breakdown
,”
J. Fluid Mech.
382
,
283
306
(
1999
).
10.
F.
Waleffe
, “
The nature of triad interactions in homogeneous turbulence
,”
Phys. Fluids A
4
,
350
363
(
1992
).
11.
J.
Wu
,
H.
Ma
, and
M.
Zhou
,
Vorticity and Vortex Dynamics
(
Springer
,
Berlin Heidelberg
,
2006
).
12.
H. K.
Moffatt
, “
The degree of knottedness of tangled vortex lines
,”
J. Fluid Mech.
35
,
117
129
(
1969
).
13.
H. K.
Moffatt
, “
Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 2. Stability considerations
,”
J. Fluid Mech.
166
,
359
378
(
1986
).
14.
H. K.
Moffatt
, “
On the existence of Euler flows that are topologically accessible from a given flow
,”
Rev. Bras. Cienc. Mec.
9
,
93
101
(
1987
).
15.
H. K.
Moffatt
and
A.
Tsinober
, “
Helicity in laminar and turbulent flow
,”
Annu. Rev. Fluid Mech.
24
,
281
312
(
1992
).
16.
H. K.
Moffatt
, “
Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 1. Fundamentals
,”
J. Fluid Mech.
159
,
359
378
(
1985
).
17.
L.
Woltjer
, “
A theorem on force-free magnetic fields
,”
Proc. Natl. Acad. Sci. U. S. A.
44
,
489
491
(
1958
).
18.
T.
Dombre
,
U.
Frisch
,
J. M.
Greene
,
M.
Hénon
,
A.
Mehr
, and
A. M.
Soward
, “
Chaotic streamlines in the ABC flows
,”
J. Fluid Mech.
167
,
353
391
(
1986
).
19.
C.
Shi
and
Y.
Huang
, “
Some properties of three-dimensional Beltrami flows
,”
Acta Mech. Sin.
7
,
289
294
(
1991
).
20.
F.
Waleffe
, “
Inertial transfers in the helical decomposition
,”
Phys. Fluids A
5
,
677
685
(
1993
).
21.
G.
Sahoo
,
A.
Alexakis
, and
L.
Biferale
, “
Discontinuous transition from direct to inverse cascade in three-dimensional turbulence
,”
Phys. Rev. Lett.
118
,
164501
(
2017
).
22.
A.
Alexakis
and
L.
Biferale
, “
Cascades and transitions in turbulent flows
,”
Phys. Rep.
767–769
,
1
101
(
2018
).
23.
A.
Pouquet
and
P.
Mininni
, “
The interplay between helicity and rotation in turbulence: Implications for scaling laws and small-scale dynamics
,”
Philos. Trans. R. Soc., A
368
,
1635
1662
(
2010
).
24.
W. H.
Matthaeus
,
A.
Pouquet
,
P. D.
Mininni
,
P.
Dmitruk
, and
B.
Breech
, “
Rapid alignment of velocity and magnetic field in magnetohydrodynamic turbulence
,”
Phys. Rev. Lett.
100
,
085003
(
2008
).
25.
E. R.
Priest
,
Solar Magnetohydrodynamics
(
Publishing Company
,
Boston
,
1982
).
26.
P.
Demoulin
and
E. R.
Priest
, “
Instability of a prominence supported in a linear force-free field
,”
Astron. Astrophys.
206
,
336
347
(
1988
).
27.
A.
Costa
and
R.
González
, “
Stability and mode analysis of solar coronal loops using thermodynamic irreversible energy principles
,”
Astron. Astrophys.
458
,
953
963
(
2006
).
28.
A.
Costa
and
R.
González
, “
Stability and mode analysis of solar coronal loops using thermodynamic irreversible energy principles. II. Modes in twisted non-isothermal magnetic field configurations
,”
Astron. Astrophys.
489
,
755
762
(
2008
).
29.
N. L.
Shatashvili
and
Z.
Yoshida
, “
Generalized Beltrami field modeling disk-jet system
,”
AIP Conf. Proc.
1392
,
73
82
(
2011
).
30.
D. G.
Dritschel
, “
Generalized helical Beltrami flows in hydrodynamics and magnetohydrodynamics
,”
J. Fluid Mech.
222
,
525
541
(
1991
).
31.
D. K.
Lilly
, “
The structure, energetics and propagation of rotating convective storms. Part II: Helicity and storm stabilization
,”
J. Atmos. Sci.
43
,
126
140
(
1986
).
32.
M. V.
Kurgansky
, “
Vertical helicity flux in atmospheric vortices as a measure of their intensity
,”
Izv., Atmos. Oceanic Phys.
44
,
64
71
(
2008
).
33.
M.
Iqbal
,
A. M.
Mirza
,
G.
Murtaza
, and
Z.
Yoshida
, “
High relaxed states with internal conductor plasma configuration
,”
Phys. Plasmas
8
,
1559
1564
(
2001
).
34.
Z. S.
Qu
,
R. L.
Dewar
,
F.
Ebrahimi
,
J. K.
Anderson
,
S. R.
Hudson
, and
M. J.
Hole
, “
Stepped pressure equilibrium with relaxed flow and applications in reversed-field pinch plasmas
,”
Plasma Phys. Controlled Fusion
62
,
054002
(
2020
).
35.
R.
Guarga
and
J.
Cataldo
, “
A theoretical analysis of symmetry loss in high Reynolds swirling flows
,”
J. Hydraul. Res.
31
,
35
48
(
1993
).
36.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
1967
).
37.
T. B.
Benjamin
, “
Theory of the vortex breakdown phenomenon
,”
J. Fluid Mech.
14
,
593
629
(
1962
).
You do not currently have access to this content.