This study concerns the linear stability of buoyant convection induced by lateral heating inside a shallow cavity. It highlights the effects caused by submitting the flow to horizontal high-frequency vibrations. The steady-state profiles are first derived using a parallel flow approximation and studied for two types of boundaries, either thermally insulating or thermally conducting. The basic flow is found to be attenuated when subjected to horizontal high-frequency vibrations, with a faster decay in the case of thermally insulating walls than in the case of thermally conducting walls. The effects of vibrations and thermal boundary conditions are then investigated for various types of instability that may arise in such a situation, depending on the Prandtl number, such as shear, oscillatory, and thermal instabilities. It is observed that horizontal high-frequency vibrations have a stabilizing effect on all instabilities developing in such a situation and that this stabilization is generally more efficient in the case of insulating walls, for which the basic flow is attenuated more rapidly. We finally analyze the physical mechanisms that trigger these instabilities through fluctuating energy budgets at the critical thresholds.

1.
Bardan
,
G.
and
Mojtabi
,
A.
, “
On the Horton–Rogers–Lapwood convective instability with vertical vibration: Onset of convection
,”
Phys. Fluids
12
(
11
),
2723
2731
(
2000
).
2.
Benzid
,
C.
,
Kaddeche
,
S.
,
Abdennadher
,
A.
,
Henry
,
D.
, and
Ben Hadid
,
H.
, “
Rayleigh–Bénard instabilities under high-frequency vibration and magnetic field
,”
C. R. Mec.
337
,
291
296
(
2009
).
3.
Birikh
,
R. V.
and
Katanova
,
T. N.
, “
Effect of high-frequency vibrations on the stability of advective flow
,”
Fluid Dyn.
33
(
1
),
12
17
(
1998
).
4.
Bouarab
,
S.
,
Mokhtari
,
F.
,
Kaddeche
,
S.
,
Henry
,
D.
,
Botton
,
V.
, and
Medelfef
,
A.
, “
Theoretical and numerical study on high frequency vibrational convection: Influence of the vibration direction on the flow structure
,”
Phys. Fluids
31
,
043605
(
2019
).
5.
Bouarab
,
S.
,
Mokhtari
,
F.
,
Kaddeche
,
S.
,
Henry
,
D.
,
Botton
,
V.
, and
Medelfef
,
A.
, “
Effect of high frequency vibrations on PV silicon purification
,”
J. Cryst. Growth
529
,
125298
(
2020
).
6.
Capper
,
P.
and
Zharikov
,
E.
,
Handbook of Crystal Growth
,
2nd ed.
(
Elsevier
,
Boston
,
2015
), pp.
951
993
.
7.
Chikulaev
,
D. G.
and
Shvarts
,
K. G.
, “
Effect of rotation on the stability of advective flow in a horizontal liquid layer with solid boundaries at small Prandtl numbers
,”
Fluid Dyn.
50
,
215
222
(
2015
).
8.
Cisse
,
I.
,
Bardan
,
G.
, and
Mojtabi
,
A.
, “
Rayleigh–Bénard convective instability of a fluid under high-frequency vibration
,”
Int. J. Heat Mass Transfer
47
(
19
),
4101
4112
(
2004
).
9.
Crewdson
,
G.
and
Lappa
,
M.
, “
Spatial and temporal evolution of three-dimensional thermovibrational convection in a cubic cavity with various thermal boundary conditions
,”
Phys. Fluids
34
(
1
),
014108
(
2022
).
10.
Delgado-Buscalioni
,
R.
and
Crespo del Arco
,
E.
, “
Stability of thermally driven shear flows in long inclined cavities with end-to-end temperature difference
,”
Int. J. Heat Mass Transfer
42
(
15
),
2811
2822
(
1999
).
11.
Demin
,
V.
,
Gershuni
,
G.
, and
Verkholantsev
,
I.
, “
Mechanical quasi-equilibrium and thermovibrational convective instability in an inclined fluid layer
,”
Int. J. Heat Mass Transfer
39
(
9
),
1979
1991
(
1996
).
12.
Dhanaraj
,
G.
,
Byrappa
,
K.
,
Prasad
,
V.
, and
Dudley
,
M.
,
Springer Handbook of Crystal Growth
(
Springer
,
Berlin, Heidelberg
,
2010
).
13.
Dridi
,
W.
,
Henry
,
D.
, and
Ben Hadid
,
H.
, “
Influence of acoustic streaming on the stability of melt flows in horizontal Bridgman configurations
,”
J. Cryst. Growth
310
,
1546
1551
(
2008
).
14.
Dridi
,
W.
,
Henry
,
D.
, and
Ben Hadid
,
H.
, “
Stability of buoyant convection in a layer submitted to acoustic streaming
,”
Phys. Rev. E
81
,
056309
(
2010
).
15.
Farooq
,
A.
and
Homsy
,
G. M.
, “
Streaming flows due to g-jitter-induced natural convection
,”
J. Fluid Mech.
271
,
351
378
(
1994
).
16.
Farooq
,
A.
and
Homsy
,
G. M.
, “
Linear and nonlinear dynamics of a differentially heated slot under gravity modulation
,”
J. Fluid Mech.
313
,
1
38
(
1996
).
17.
Fu
,
W. S.
, “
Transient thermal convection in an enclosure induced simultaneously by gravity and vibration
,”
Int. J. Heat Mass Transfer
36
(
2
),
437
452
(
1993
).
18.
Gershuni
,
G.
and
Zhukhovitskii
,
E.
, “
On parametric excitation of convective instability
,”
J. Appl. Math. Mech.
27
(
5
),
1197
1204
(
1963
).
19.
Gershuni
,
G. Z.
,
Laure
,
P.
,
Myznikov
,
V.
,
Roux
,
B.
, and
Zhukhovitsky
,
E. M.
, “
On the stability of plane-parallel advective flows in long horizontal layers
,”
Microgravity Q.
2
,
141
151
(
1992
).
20.
Gershuni
,
G. Z.
and
Lyubimov
,
A. V.
,
Thermal Vibrational Convection
(
John Wiley & Sons
,
1998
).
21.
Gershuni
,
G. Z.
and
Zhukhovitskii
,
E. M.
, “
Convective instability of a fluid in a vibration field under conditions of weightlessness
,”
Fluid Dyn.
16
(
4
),
498
504
(
1981
).
22.
Gershuni
,
G. Z.
,
Zhukhovitskii
,
E. M.
, and
Yurkov
,
I. S.
, “
On convective stability in the presence of periodically varying parameter
,”
J. Appl. Math. Mech.
34
(
3
),
442
452
(
1970
).
23.
Gershuni
,
G. Z.
,
Zhukhovitsky
,
E. M.
, and
Yurkov
,
I. S.
, “
Vibrational thermal convection in a rectangular cavity
,”
Fluid Dyn.
17
,
565
569
(
1982
).
24.
Gresho
,
P. M.
and
Sani
,
R. L.
, “
The effects of gravity modulation on the stability of a heated fluid layer
,”
J. Fluid Mech.
40
(
4
),
783
806
(
1970
).
25.
Hadley
,
G. S.
, “
Concerning the cause of the general trade winds
,”
Philos. Trans.
29
,
58
62
(
1735
).
26.
Hart
,
J. E.
, “
Stability of thin non-rotating Hadley circulations
,”
J. Atmos. Sci.
29
,
687
696
(
1972
).
27.
Henry
,
D.
,
Kaddeche
,
S.
, and
Ben Hadid
,
H.
, “
Stabilization of thermogravitational flows by magnetic field and surface tension
,”
Phys. Fluids
17
,
054106
(
2005
).
28.
Hudoba
,
A.
and
Molokov
,
S.
, “
The effect of the Prandtl number on magnetoconvection in a horizontal fluid layer
,”
Int. J. Heat Mass Transfer
116
,
1292
1303
(
2018
).
29.
Hudoba
,
A.
,
Molokov
,
S.
,
Aleksandrova
,
S.
, and
Pedcenko
,
A.
, “
Linear stability of buoyant convection in a horizontal layer of an electrically conducting fluid in moderate and high vertical magnetic field
,”
Phys. Fluids
28
,
094104
(
2016
).
30.
Kaddeche
,
S.
,
Garandet
,
J.
,
Henry
,
D.
,
Hadid
,
H. B.
, and
Mojtabi
,
A.
, “
On the effect of natural convection on solute segregation in the horizontal bridgman configuration: Convergence of a theoretical model with numerical and experimental data
,”
J. Cryst. Growth
409
,
89
94
(
2015
).
31.
Kaddeche
,
S.
,
Henry
,
D.
, and
Ben Hadid
,
H.
, “
Magnetic stabilization of the buoyant convection between infinite horizontal walls with a horizontal temperature gradient
,”
J. Fluid Mech.
480
,
185
216
(
2003
).
32.
Kuo
,
H. P.
and
Korpela
,
S. A.
, “
Stability and finite amplitude natural convection in a shallow cavity with insulated top and bottom and heated from a side
,”
Phys. Fluids
31
(
1
),
33
42
(
1988
).
33.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
, “
Convergence properties of the Nelder–Mead simplex method in low dimensions
,”
SIAM J. Optim.
9
(
1
),
112
147
(
1998
).
34.
Lappa
,
M.
, “
Secondary and oscillatory gravitational instabilities in canonical three-dimensional models of crystal growth from the melt. Part 2: Lateral heating and Hadley circulation
,”
C. R. Méc.
335
,
261
268
(
2007
).
35.
Lappa
,
M.
, “
Exact solutions for thermal problems: Buoyancy, marangoni, vibrational and magnetic-field-controlled flows
,”
Rev. Appl. Phys.
1
(
1
),
1
14
(
2012
).
36.
Laure
,
P.
, “
Étude des mouvements de convection dans une cavité rectangulaire soumise à un gradient de température horizontal
,”
J. Theor. Appl. Mech.
6
,
351
382
(
1987
).
37.
Laure
,
P.
and
Roux
,
B.
, “
Linear and non-linear analysis of the Hadley circulation
,”
J. Cryst. Growth
97
,
226
234
(
1989
).
38.
Lizée
,
A.
and
Alexander
,
J. I. D.
, “
Chaotic thermovibrational flow in a laterally heated cavity
,”
Phys. Rev. E
56
,
4152
4156
(
1997
).
39.
Lyubimov
,
D.
,
Lyubimova
,
T.
,
Meradji
,
S.
, and
Roux
,
B.
, “
Vibrational control of crystal growth from liquid phase
,”
J. Cryst. Growth
180
(
3
),
648
659
(
1997
).
40.
Lyubimova
,
T.
,
Lyubimov
,
D.
, and
Ivantsov
,
A.
, “
The influence of vibrations on melt flows during detached Bridgman crystal growth
,”
J. Cryst. Growth
385
,
77
81
(
2014
).
41.
Mathews
,
J. H.
and
Fink
,
K. D.
,
Numerical Methods Using Matlab
(
Prentice Hall
,
1999
).
42.
Medelfef
,
A.
,
Henry
,
D.
,
Bouabdallah
,
A.
,
Kaddeche
,
S.
, and
Boussaa
,
R.
, “
Effect of rotation on the stability of side-heated buoyant convection between infinite horizontal walls
,”
Phys. Rev. Fluids
2
,
093902
(
2017
).
43.
Mialdun
,
A.
,
Ryzhkov
,
I. I.
,
Melnikov
,
D. E.
, and
Shevtsova
,
V.
, “
Experimental evidence of thermal vibrational convection in a nonuniformly heated fluid in a reduced gravity environment
,”
Phys. Rev. Lett.
101
,
084501
(
2008
).
44.
Mokhtari
,
F.
,
Kaddeche
,
S.
,
Henry
,
D.
,
Bouarab
,
S.
,
Medelfef
,
A.
, and
Botton
,
V.
, “
Three-dimensional effect of high frequency vibration on convection in silicon melt
,”
Phys. Rev. Fluids
5
,
123501
(
2020
).
45.
Naumann
,
R.
,
Haulenbeek
,
G.
,
Kawamura
,
H.
, and
Matsunaga
,
K.
, “
The JUSTSAP experiment on STS-95
,”
Microgravity Sci. Technol.
13
(
22
),
22
32
(
2002
).
46.
Nelder
,
J. A.
and
Mead
,
R.
, “
A simplex method for function minimization
,”
Comput. J.
7
,
308
313
(
1965
).
47.
Perez-Espejel
,
D.
and
Avila
,
R.
, “
Linear stability analysis of the natural convection in inclined rotating parallel plates
,”
Phys. Lett. A
383
(
9
),
859
866
(
2019
).
48.
Perminov
,
A. V.
,
Nikulina
,
S. A.
, and
Lyubimova
,
T. P.
, “
Analysis of thermovibrational convection modes in square cavity under microgravity conditions
,”
Microgravity Sci. Technol.
34
,
34
(
2022
).
49.
Pimputkar
,
S. M.
and
Ostrach
,
S.
, “
Convective effects in crystals grown from melts
,”
J. Cryst. Growth
55
,
614
646
(
1981
).
50.
Rogers
,
J. L.
,
Schatz
,
M. F.
,
Bougie
,
J. L.
, and
Swift
,
J. B.
, “
Rayleigh–Bénard convection in a vertically oscillated fluid layer
,”
Phys. Rev. Lett.
84
,
87
90
(
2000
).
51.
Shevtsova
,
V.
,
Gaponenko
,
Y. A.
,
Melnikov
,
D. E.
,
Ryzhkov
,
I. I.
, and
Mialdun
,
A.
, “
Study of thermoconvective flows induced by vibrations in reduced gravity
,”
Acta Astronaut.
66
,
166
173
(
2010
).
52.
Shvarts
,
K.
and
Boudlal
,
A.
, “
Effect of rotation on stability of advective flow in horizontal liquid layer with a free upper boundary
,”
J. Phys.: Conf. Ser.
216
,
012005
(
2010
).
53.
Shvarts
,
K. G.
, “
Effect of rotation on the stability of advective flow in a horizontal fluid layer at a small Prandtl number
,”
Fluid Dyn.
40
,
193
201
(
2005
).
54.
Swaminathan
,
A.
,
Garrett
,
S. L.
,
Poese
,
M. E.
, and
Smith
,
R. W. M.
, “
Dynamic stabilization of the Rayleigh–Bénard instability by acceleration modulation
,”
J. Acoust. Soc. Am.
144
(
4
),
2334
2343
(
2018
).
55.
Zyuzgin
,
A. V.
,
Putin
,
G. F.
, and
Kharisov
,
A. F.
, “
Ground modeling of thermovibrational convection in real weightlessness
,”
Fluid Dyn.
42
,
354
361
(
2007
).
You do not currently have access to this content.