An accurate and fast prediction of particle-laden flow fields is of particular relevance for a wide variety of industrial applications. The motivation for this research is to evaluate the applicability of deep learning methods for providing statistical properties of the carrier and dispersed phases in a particle-laden vertical pipe flow. Deep neural network (DNN) models are trained for different dependent variables using 756 high-fidelity datasets acquired from point-particle large-eddy simulations for different values of Stokes number, St, bulk particle volume fraction, Φ ¯ v, and wall roughness, Δ γ, for the range S t = 10 500 , Φ ¯ v = 5 × 10 5 10 3, and Δ γ = 1 ° 6 °. The considered parameter space corresponds to the inertia-dominated regime and covers a large extent of the typical conditions in powder-based laser metal deposition. We find that the DNN models capture the nonlinear dynamics of the system and recreate the statistical properties of the particle-laden pipe flow. However, DNN predictions of the particle statistics are of higher accuracy compared to the fluid statistics, which is attributed to the highly non-monotonic dependence of the fluid statistics on the control parameters. Owing to significantly decreased time-to-solution, the trained DNN models are promising as surrogate models to expedite model development and design process of various industrial applications.

1.
P.
Swamee
, “
Design of sediment-transporting pipeline
,”
J. Hydraul. Eng.
121
,
72
(
1995
).
2.
B.
Vreman
,
B.
Geurts
,
N.
Deen
,
J. A. M.
Kuipers
, and
J. G. M.
Kuerten
, “
Two- and four-way coupled Euler–Lagrangian large-eddy simulation of turbulent particle-laden channel flow
,”
Flow, Turbul. Combust.
82
,
47
(
2009
).
3.
T. C. W.
Lau
and
G. J.
Nathan
, “
The effect of Stokes number on particle velocity and concentration distributions in a well-characterised, turbulent, co-flowing two-phase jet
,”
J. Fluid Mech.
809
,
72
110
(
2016
).
4.
A. K.
Mallik
,
S.
Mukherjee
, and
M. V.
Panchagnula
, “
An experimental study of respiratory aerosol transport in phantom lung bronchioles
,”
Phys. Fluids
32
,
111903
(
2020
).
5.
A.
Bohlen
,
T.
Seefeld
,
A.
Haghshenas
, and
R.
Groll
, “
Characterization of the powder stream propagation behavior of a discrete coaxial nozzle for laser metal deposition
,”
J. Laser Appl.
34
,
042048
(
2022
).
6.
N.
Rohilla
,
S.
Arya
, and
P. S.
Goswami
, “
Effect of channel dimensions and Reynolds numbers on the turbulence modulation for particle-laden turbulent channel flows
,”
Phys. Fluids
35
,
053323
(
2023
).
7.
W.-L.
Ren
,
X.-H.
Zhang
,
Y.
Zhang
,
P.
Li
, and
X.-B.
Lu
, “
Investigation of motion characteristics of coarse particles in hydraulic collection
,”
Phys. Fluids
35
,
043322
(
2023
).
8.
A.
Capone
,
G.
Moscato
, and
G.
Romano
, “
Role of density ratio on particle dispersion in a turbulent jet
,”
Phys. Fluids
35
,
013332
(
2023
).
9.
F.
Battista
,
P.
Gualtieri
,
J.-P.
Mollicone
,
F.
Salvadore
, and
C. M.
Casciola
, “
Drag increase and turbulence augmentation in two-way coupled particle-laden wall-bounded flows
,”
Phys. Fluids
35
,
045133
(
2023
).
10.
S.
Ghosh
and
P. S.
Goswami
, “
Dynamics of particle-laden turbulent Couette flow: Turbulence modulation by inertial particles
,”
Phys. Fluids
34
,
083325
(
2022
).
11.
X.
Zhang
,
G. J.
Nathan
,
Z. F.
Tian
, and
R. C.
Chin
, “
The influence of the coefficient of restitution on flow regimes within horizontal particle-laden pipe flows
,”
Phys. Fluids
33
,
123318
(
2021
).
12.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
(
2020
).
13.
W.
Zhang
,
X.
Dong
,
Z.
Sun
, and
S.
Xu
, “
The contact time of rebounding-coalescing droplets on rectangular-ridged superhydrophobic surfaces
,”
Phys. Fluids
35
,
032112
(
2023
).
14.
R.
Hassanian
,
H.
Myneni
,
A.
Helgadottir
, and
M.
Riedel
, “
Deciphering the dynamics of distorted turbulent flows: Lagrangian particle tracking and chaos prediction through transformer-based deep learning models
,”
Phys. Fluids
35
,
075118
(
2023
).
15.
X.
Wang
,
H.
Wen
,
T.
Hu
, and
B.
Wang
, “
Conical breakup of droplets in dielectric liquid medium
,”
Phys. Fluids
35
,
023309
(
2023
).
16.
J.
Williams
,
U.
Wolfram
, and
A.
Ozel
, “
Neural stochastic differential equations for particle dispersion in large-eddy simulations of homogeneous isotropic turbulence
,”
Phys. Fluids
34
,
113315
(
2022
).
17.
K.
Fukami
,
K.
Fukagata
, and
K.
Taira
, “
Assessment of supervised machine learning methods for fluid flows
,”
Theor. Comput. Fluid Dyn.
34
,
497
519
(
2020
).
18.
P. A.
Srinivasan
,
L.
Guastoni
,
H.
Azizpour
,
P.
Schlatter
, and
R.
Vinuesa
, “
Predictions of turbulent shear flows using deep neural networks
,”
Phys. Rev. Fluids
4
,
054603
(
2019
).
19.
S.
Pandey
,
J.
Schumacher
, and
K. R.
Sreenivasan
, “
A perspective on machine learning in turbulent flows
,”
J. Turbul.
21
,
567
(
2020
).
20.
N.
Ganesh
,
P.
Jain
,
A.
Choudhury
,
P.
Dutta
,
K.
Kalita
, and
P.
Barsocchi
, “
Random forest regression-based machine learning model for accurate estimation of fluid flow in curved pipes
,”
Processes
9
,
2095
(
2021
).
21.
L.
Queiroz
,
F.
Santos
,
J.
Oliveira
, and
M.
Souza
, “
Physics-Informed deep learning to predict flow fields in cyclone separators
,”
Digital Chem. Eng.
1
,
100002
(
2021
).
22.
V.
Sekar
,
Q.
Jiang
,
C.
Shu
, and
B. C.
Khoo
, “
Fast flow field prediction over airfoils using deep learning approach
,”
Phys. Fluids
31
,
057103
(
2019
).
23.
A.
Khalifa
and
M.
Breuer
, “
Data-driven model for the breakage of dry monodisperse agglomerates by wall impact applicable for multiphase flow simulations
,”
Powder Technol.
376
,
241
(
2020
).
24.
Y.
Hardalupas
,
A.
Taylor
, and
J.
Whitelaw
, “
Velocity and particle-flux characteristics of turbulent particle-laden jets
,”
Proc. R. Soc. A
426
,
31
(
1989
).
25.
S.
Zekovic
,
R.
Dwivedi
, and
R.
Kovacevic
, “
Numerical simulation and experimental investigation of gas–powder flow from radially symmetrical nozzles in laser-based direct metal deposition
,”
Int. J. Mach. Tools Manuf.
47
,
112
(
2007
).
26.
P.
Balu
,
P.
Leggett
, and
R.
Kovacevic
, “
Parametric study on a coaxial multi-material powder flow in laser-based powder deposition process
,”
J. Mater. Process. Technol.
212
,
1598
(
2012
).
27.
A.
Haghshenas
,
A.
Bohlen
,
D.
Tyralla
, and
R.
Groll
, “
The relevance of wall roughness modeling for simulation of powder flows in laser metal deposition nozzles
,”
Int. J. Adv. Manuf. Technol.
123
,
1441
(
2022
).
28.
P.
Mullinger
and
B.
Jenkins
,
Industrial and Process Furnaces: Principles, Design and Operation
(
Elsevier
,
2008
).
29.
F.
Frishman
,
M.
Hussainov
,
A.
Kartushinsky
, and
Ü.
Rudi
, “
Distribution characteristics of the mass concentration of coarse solid particles in a two-phase turbulent jet
,”
J. Aerosol Sci.
30
,
51
(
1999
).
30.
H.
Zhou
,
E. R.
Hawkes
,
T. C.
Lau
,
R.
Chin
,
G. J.
Nathan
, and
H.
Wang
, “
Understanding of turbulence modulation and particle response in a particle-laden jet from direct numerical simulations
,”
J. Fluid Mech.
950
,
A3
(
2022
).
31.
T. C. W.
Lau
and
G. J.
Nathan
, “
Influence of Stokes number on the velocity and concentration distributions in particle-laden jets
,”
J. Fluid Mech.
757
,
432
(
2014
).
32.
M.
Benson
,
T.
Tanaka
, and
J.
Eaton
, “
Effects of wall roughness on particle velocities in a turbulent channel flow
,”
J. Fluids Eng.
127
,
250
(
2005
).
33.
G.
Mallouppas
and
B.
van Wachem
, “
Large eddy simulations of turbulent particle-laden channel flow
,”
Int. J. Multiphase Flow
54
,
65
(
2013
).
34.
A. W.
Vreman
, “
Turbulence attenuation in particle-laden flow in smooth and rough channels
,”
J. Fluid Mech.
773
,
103
(
2015
).
35.
A. W.
Vreman
, “
Turbulence characteristics of particle-laden pipe flow
,”
J. Fluid Mech.
584
,
235
(
2007
).
36.
Q.
Wang
and
K.
Squires
, “
Large eddy simulation of particle deposition in a vertical turbulent channel flow
,”
Int. J. Multiphase Flow
22
,
667
(
1996
).
37.
J. M.
Kuerten
, “
Point-particle DNS and LES of particle-laden turbulent flow—A state-of-the-art review
,”
Flow, Turbul. Combust.
97
,
689
713
(
2016
).
38.
A.
Haghshenas
and
R.
Groll
, “
Characterization of particle-laden jet flows in inertia-dominated regime
,”
Int. J. Multiphase Flow
157
,
104245
(
2022
).
39.
J. G. M.
Eggels
,
F.
Unger
,
M. H.
Weiss
,
J.
Westerweel
,
R. J.
Adrian
,
R.
Friedrich
, and
F. T. M.
Nieuwstadt
, “
Fully developed turbulent pipe flow: A comparison between direct numerical simulation and experiment
,”
J. Fluid Mech.
268
,
175
210
(
1994
).
40.
M.
Sommerfeld
and
N.
Huber
, “
Experimental analysis and modelling of particle-wall collisions
,”
Int. J. Multiphase Flow
25
,
1457
(
1999
).
41.
J.
Kussin
and
M.
Sommerfeld
, “
Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness
,”
Exp. Fluids
33
,
143
159
(
2002
).
42.
E.
Gadelmawla
,
M.
Koura
,
T.
Maksoud
,
I.
Elewa
, and
H.
Soliman
, “
Roughness parameters
,”
J. Mater. Process. Technol.
123
,
133
(
2002
).
43.
G. A. N.
Ricardo
and
M.
Sommerfeld
, “
Experimental evaluation of surface roughness variation of ductile materials due to solid particle erosion
,”
Adv. Powder Technol.
31
,
3790
(
2020
).
44.
J.
Jiménez
, “
Turbulent flows over rough walls
,”
Annu. Rev. Fluid Mech.
36
,
173
(
2004
).
45.
S.
Elghobashi
, “
Particle-laden turbulent flows: Direct simulation and closure models
,”
Appl. Sci. Res.
48
,
301
(
1991
).
46.
S.
Elghobashi
, “
On predicting particle-laden turbulent flows
,”
Appl. Sci. Res.
52
,
309
(
1994
).
47.
S.
Balachandar
and
J. K.
Eaton
, “
Turbulent dispersed multiphase flow
,”
Annu. Rev. Fluid Mech.
42
,
111
(
2010
).
48.
G.
Sardina
,
P.
Schlatter
,
F.
Picano
,
C. M.
Casciola
,
L.
Brandt
, and
D. S.
Henningson
, “
Self-similar transport of inertial particles in a turbulent boundary layer
,”
J. Fluid Mech.
706
,
584
(
2012
).
49.
C.
Fernandes
,
D.
Semyonov
,
L.
Ferrás
, and
J.
Nobrega
, “
Validation of the CFD-DPM solver DPMFoam in OpenFOAM® through analytical, numerical and experimental comparisons
,”
Granular Matter
20
,
64
(
2018
).
50.
V.
Armenio
and
V.
Fiorotto
, “
The importance of the forces acting on particles in turbulent flows
,”
Phys. Fluids
13
,
2437
(
2001
).
51.
C. Y.
Wen
and
Y. H.
Yu
, “
A generalized method for predicting the minimum fluidization velocity
,”
AIChE J.
12
,
610
(
1966
).
52.
L.
Schiller
and
A.
Naumann
, “
A drag coefficient correlation
,”
Z. Ver. Dtsch. Ing.
77
,
318
320
(
1935
).
53.
P. G.
Saffman
, “
The lift on a small sphere in a slow shear flow
,”
J. Fluid Mech.
22
,
385
400
(
1965
).
54.
W.-W.
Kim
and
S.
Menon
, “
A new dynamic one-equation subgrid-scale model for large eddy simulations
,” AIAA Paper No. 1995-356,
1995
.
55.
C. T.
Crowe
,
J. D.
Schwarzkopf
,
M.
Sommerfeld
, and
Y.
Tsuji
,
Multiphase Flows with Droplets and Particles
(
CRC Press
,
1998
).
56.
Y.
Yamamoto
,
M.
Potthoff
,
T.
Tanaka
,
T.
Kajishima
, and
Y.
Tsuji
, “
Large-eddy simulation of turbulent gas–particle flow in a vertical channel: Effect of considering inter-particle collisions
,”
J. Fluid Mech.
442
,
303
(
2001
).
57.
S. E.
Mena
and
J. S.
Curtis
, “
Experimental data for solid–liquid flows at intermediate and high Stokes numbers
,”
J. Fluid Mech.
883
,
A24
(
2020
).
58.
Z.
Yu
,
Y.
Xia
,
Y.
Guo
, and
J.
Lin
, “
Modulation of turbulence intensity by heavy finite-size particles in upward channel flow
,”
J. Fluid Mech.
913
,
A3
(
2021
).
59.
N. J.
Georgiadis
,
D. P.
Rizzetta
, and
C.
Fureby
, “
Large-eddy simulation: Current capabilities, recommended practices, and future research
,”
AIAA J.
48
,
1772
(
2010
).
60.
S.
Lain
,
M.
Sommerfeld
, and
J.
Kussin
, “
Experimental studies and modelling of four-way coupling in particle-laden horizontal channel flow
,”
Int. J. Heat Fluid Flow
23
,
647
(
2002
).
61.
K.
Hornik
,
M.
Stinchcombe
, and
H.
White
, “
Multilayer feedforward networks are universal approximators
,”
Neural Networks
2
,
359
(
1989
).
62.
M. A.
Nielsen
,
Neural Network and Deep Learning
(
Determination Press
,
2015
).
63.
T.
Hastie
,
R.
Tibshirani
, and
J.
Friedman
,
The Elements of Statistical Learning
(
Springer
,
New York
,
2009
).
64.
F.
Frishman
,
M.
Hussainov
,
A.
Kartushinsky
, and
A.
Mulgi
, “
Numerical simulation of a two-phase turbulent pipe-jet flow loaded with polydispersed solid admixture
,”
Int. J. Multiphase Flow
23
,
765
(
1997
).
65.
M.
Reeks
, “
The transport of discrete particles in inhomogeneous turbulence
,”
J. Aerosol Sci.
14
,
729
(
1983
).
66.
A. U.
Karnik
and
J. S.
Shrimpton
, “
Mitigation of preferential concentration of small inertial particles in stationary isotropic turbulence using electrical and gravitational body forces
,”
Phys. Fluids
24
,
073301
(
2012
).
67.
P. L.
Johnson
,
M.
Bassenne
, and
P.
Moin
, “
Turbophoresis of small inertial particles: Theoretical considerations and application to wall-modelled large-eddy simulations
,”
J. Fluid Mech.
883
,
A27
(
2020
).
68.
J. D.
Kulick
,
J. R.
Fessler
, and
J. K.
Eaton
, “
Particle response and turbulence modification in fully developed channel flow
,”
J. Fluid Mech.
277
,
109
(
1994
).
69.
Y.
Tsuji
,
Y.
Morikawa
, and
H.
Shiomi
, “
LDV measurements of an air-solid two-phase flow in a vertical pipe
,”
J. Fluid Mech.
139
,
417
(
1984
).
70.
Y.
Zhao
,
M.
Liu
,
J.
Li
,
Y.
Yan
, and
J.
Yao
, “
Modulation of turbulence by dispersed charged particles in pipe flow
,”
Phys. Fluids
34
,
123315
(
2022
).
71.
R. A.
Gore
and
C. T.
Crowe
, “
Modulation of turbulence by a dispersed phase
,”
J. Fluids Eng.
113
,
304
(
1991
).
You do not currently have access to this content.