We derive the oscillatory exact solutions to the Navier–Stokes equations that describe z-invariant viscous fluid flows in a general cylindrical pipe C = D × 1 with section D having an arbitrary geometry and a piece-wise smooth boundary D. Exact viscous fluid flows are presented that satisfy the no-slip boundary condition at the pipe's boundary D × 1 and have an arbitrary number of oscillations of the total kinematic momentum vector on any given interval of time [ T 1 , T 2 ]. The stability of the oscillations with respect to small perturbations of infinitely many parameters is proven. The new method for the generation of a hierarchy of exact solutions with oscillating kinematic momentum is developed. Exact solutions to the Navier–Stokes equations without external forces (in addition to the friction forces at the pipes's boundary D × 1) are derived, which have any number of oscillations of the average shift of viscous fluid.

1.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
1981
).
2.
H.
Lamb
,
Hydrodynamics
(
Dover Publications
,
New York
,
1945
).
3.
O.
Bogoyavlenskij
, “
The new effect of oscillations of the total kinematic momentum vector of viscous fluid
,”
Phys. Fluids
34
,
123104
(
2022
).
4.
O.
Bogoyavlenskij
, “
The new effect of oscillations of the total angular momentum vector of viscous fluid
,”
Phys. Fluids
34
,
083108
(
2022
).
5.
G.
Birkhoff
,
Hydrodynamics
(
Princeton University Press
,
Princeton, NJ
,
1960
).
6.
P.
Constantin
and
C.
Foias
,
Navier–Stokes Equations
(
University of Chicago Press
,
Chicago, IL
,
1988
).
7.
P.
Drazin
and
N.
Riley
,
The Navier–Stokes Equations: A Classification of Flows and Exact Solutions
(
Cambridge University Press
,
Cambridge
,
2006
).
8.
A. J.
Chorin
and
J. E.
Marsden
,
A Mathematical Introduction to Fluid Mechanics
(
Springer Verlag
,
New York, Berlin
,
1998
).
9.
O. I.
Bogoyavlenskij
, “
Exact unsteady solutions to the Navier-Stokes and viscous MHD equations
,”
Phys. Lett. A
307
,
281
286
(
2003
).
10.
O.
Bogoyavlenskij
, “
New exact axisymmetric solutions to the Navier-Stokes equations
,”
Z. Naturforsch. A
75
(
1
),
29
42
(
2019
).
11.
O.
Bogoyavlenskij
and
R.
Kipka
, “
Chaotic streaklines in new exact solutions to the Navier-Stokes equations
,”
Phys. Fluids
33
,
073110
(
2021
).
12.
N.
Burmasheva
and
E.
Prosviryakov
, “
Exact solutions to Navier-Stokes equations describing a gradient nonuniform unidirectional vertical vortex fluid flow
,”
Dynamics
2
,
175
186
(
2022
).
13.
N. J.
Dyck
and
A. G.
Straatman
, “
Exact solutions to the three-dimensional Navier-Stokes equations using the extended Beltrami method
,”
J. Appl. Mech.
87
,
011004
(
2020
).
14.
V.
Agrawal
and
D.
Mitra
, “
Chaos and irreversibility of a flexible filament in periodically driven Stokes flow
,”
Phys. Rev. E
106
(
2
),
025103
(
2022
).
15.
F.
Bonacci
,
B.
Chakrabarti
,
D.
Saintillan
,
O.
Roure
, and
A.
Lindener
, “
Dynamics of flexible filaments in oscillatory shear flows
,”
J. Fluid Mech.
955
,
A35
(
2023
).
16.
E. C.
Titchmarsh
,
Eigenfunction Expansions Associated with Second-Order Differential Equations—Part II
(
Clarendon Press
,
Oxford
,
1958
).
17.
R. A.
Horn
and
C. R.
Johnson
,
Topics in Matrix Analysis
(
Cambridge University Press
,
Cambridge
,
1991
).
18.
J. W.
Brown
and
R. V.
Churchill
,
Fourier Series and Boundary Value Problems
(
McGraw Hill
,
New York
,
2012
).
19.
G. N.
Watson
,
A Treatise on the Theory of Bessel Functions
(
Cambridge University Press
,
Cambridge
,
1995
).
Published under a nonexclusive license by AIP Publishing.
You do not currently have access to this content.