The search for efficient capillary pumping has led to two main directions for investigation: first, assembly of capillary channels to provide high capillary pressures, and second, imbibition in absorbing fibers or paper pads. In the case of open microfluidics (i.e., channels where the top boundary of the fluid is in contact with air instead of a solid wall), the coupling between capillary channels and paper pads unites the two approaches and provides enhanced capillary pumping. In this work, we investigate the coupling of capillary trees—networks of channels mimicking the branches of a tree—with paper pads placed at the extremities of the channels, mimicking the small capillary networks of leaves. It is shown that high velocities and flow rates (7 mm/s or 13.1 μl/s) for more than 30 s using 50% (v/v) isopropyl alcohol, which has a 3-fold increase in viscosity in comparison to water; 6.5 mm/s or 12.1 μl/s for more than 55 s with pentanol, which has a 3.75-fold increase in viscosity in comparison to water; and >3.5 mm/s or 6.5 μl/s for more than 150 s with nonanol, which has a 11-fold increase in viscosity in comparison to water, can be reached in the root channel, enabling higher sustained flow rates than that of capillary trees alone.

1.
L.
Gervais
,
M.
Hitzbleck
, and
E.
Delamarche
, “
Capillary-driven multiparametric microfluidic chips for one-step immunoassays
,”
Biosens. Bioelectron.
27
(
1
),
64
(
2011
).
2.
R.
Safavieh
and
D.
Juncker
, “
Capillarics: Pre-programmed, self-powered microfluidic circuits built from capillary elements
,”
Lab Chip
13
(
21
),
4180
(
2013
).
3.
R.
Lucas
, “
Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten
,”
Kolloid-Z.
23
,
15
(
1918
).
4.
E. W.
Washburn
, “
The dynamics of capillary flow
,”
Phys. Rev.
17
,
273
(
1921
).
5.
E. K.
Rideal
, “
CVIII. On the flow of liquids under capillary pressure
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
44
(
264
),
1152
(
1922
).
6.
D.
Juncker
,
H.
Schmid
,
U.
Drechsler
,
H.
Wolf
,
M.
Wolf
,
B.
Michel
,
N.
de Rooij
, and
E.
Delamarche
, “
Autonomous microfluidic capillary system
,”
Anal. Chem.
74
(
24
),
6139
(
2002
).
7.
S.
Cesaro-Tadic
,
G.
Dernick
,
D.
Juncker
,
G.
Buurman
,
H.
Kropshofer
,
B.
Michel
,
C.
Fattinger
, and
E.
Delamarche
, “
High-sensitivity miniaturized immunoassays for tumor necrosis factor? Using microfluidic systems
,”
Lab Chip
4
(
1
),
563
(
2004
).
8.
M.
Zimmermann
,
H.
Schmid
,
P.
Hunziker
, and
E.
Delamarche
, “
Capillary pumps for autonomous capillary systems
,”
Lab Chip
7
(1),
119
(
2007
).
9.
T.
Vestad
,
D. W. M.
Marr
, and
J.
Oakey
, “
Flow control for capillary-pumped microfluidic systems
,”
J. Micromech. Microeng.
14
,
1503
(
2004
).
10.
W.
Satoh
,
H.
Hosono
, and
H.
Suzuki
, “
On-chip microfluidic transport and mixing using electrowetting and incorporation of sensing functions
,”
Anal. Chem.
77
(
21
),
6857
(
2005
).
11.
P.
Kolliopoulos
,
K. S.
Jochem
,
L. F.
Francis
, and
S.
Kumar
, “
Capillary flow of evaporating liquid solutions in open rectangular microchannels
,”
J. Fluid Mech.
938
,
A22
(
2022
).
12.
N. S.
Lynn
and
D. S.
Dandy
, “
Passive microfluidic pumping using coupled capillary/evaporation effects
,”
Lab Chip
9
,
3422
(
2009
).
13.
M.
Zimmermann
,
S.
Bentley
,
H.
Schmid
,
P.
Hunziker
, and
E.
Delamarche
, “
Continuous flow in open microfluidics using controlled evaporation
,”
Lab Chip
5
(
12
),
1355
(
2005
).
14.
R.
Srinivasan
, “
Estimating zero-g flow rates in open channels having capillary pumping vanes
,”
Int. J. Numer. Methods Fluids
41
(
4
),
389
(
2003
).
15.
W.
Guo
,
J.
Hansson
, and
W.
van der Wijngaart
, “
Capillary pumping independent of the liquid surface energy and viscosity
,”
Microsyst. Nanoeng.
4
,
2
(
2018
).
16.
A.
Olanrewaju
,
M.
Beaugrand
,
M.
Yafia
, and
D.
Juncker
, “
Capillary microfluidics in microchannels: From microfluidic networks to capillaric circuits
,”
Lab Chip
18
(
16
),
2323
(
2018
).
17.
M.
Pla-Roca
and
D.
Juncker
, “
PDMS microfluidic capillary systems for patterning proteins on surfaces and performing miniaturized immunoassays
,”
Methods Mol. Biol.
671
,
177
(
2011
).
18.
E.
Delamarche
,
D.
Juncker
, and
H.
Schmid
, “
Microfluidics for processing surfaces and miniaturizing biological assays
,”
Adv. Mater.
17
,
2911
2933
(
2005
).
19.
R. B.
Channon
,
M. P.
Nguyen
,
A. G.
Scorzelli
,
E. M.
Henry
,
J.
Volckens
,
D. S.
Dandy
, and
C. S.
Henry
, “
Rapid flow in multilayer microfluidic paper-based analytical devices
,”
Lab Chip
18
(
5
),
793
(
2018
).
20.
R. B.
Channon
,
M. P.
Nguyen
,
S. H.
Charles
, and
D. S.
Dandy
, “
Multilayered microfluidic paper-based devices: Characterization, modeling, and perspectives
,”
Anal. Chem.
91
(
14
),
8966
(
2019
).
21.
S.
Mendez
,
E. M.
Fenton
,
G. R.
Gallegos
,
D. N.
Petsev
,
S. S.
Sibbett
,
H. A.
Stone
,
Y.
Zhang
, and
G. P.
López
, “
Imbibition in porous membranes of complex shape: Quasi-stationary flow in thin rectangular segments
,”
Langmuir
26
(
2
),
1380
(
2010
).
22.
X.
Wang
,
J.
Zhou
, and
I.
Papautsky
, “
Vortex-aided inertial microfluidic device for continuous particle separation with high size-selectivity, efficiency, and purity
,”
Biomicrofluidics
7
(
4
)
044119
(
2013
).
23.
T.
Kokalj
,
Y.
Park
,
M.
Vencelj
,
M.
Jenko
, and
L. P.
Lee
, “
Self-powered imbibing microfluidic pump by liquid encapsulation: SIMPLE
,”
Lab Chip
14
(
22
),
4329
(
2014
).
24.
J.
Berthier
,
K. A.
Brakke
, and
E.
Berthier
, Open Microfluidics (Wiley Publishers, 2016).
25.
J.
Berthier
,
E.
Berthier
, and
A. B.
Theberge
,
Open-Channel Microfluidics: Fundamentals and Applications
(
Morgan and Claypool Publishers
,
2019
).
26.
E.
Berthier
,
A. M.
Dostie
,
U. N.
Lee
,
J.
Berthier
, and
A. B.
Theberge
, “
Open microfluidic capillary systems
,”
Anal. Chem.
91
(
14
),
8739
(
2019
).
27.
J. J.
Lee
,
J.
Berthier
,
K. E.
Kearney
,
E.
Berthier
, and
A. B.
Theberge
, “
Open-channel capillary trees and capillary pumping
,”
Langmuir
36
(43),
12795
(
2020
).
28.
J. J.
Lee
,
J.
Berthier
,
A. B.
Theberge
, and
E.
Berthier
, “
Capillary flow in open microgrooves: Bifurcations and networks
,”
Langmuir
35
(
32
),
10667
(
2019
).
29.
J.
Berthier
,
K. A.
Brakke
,
D.
Gosselin
,
F.
Navarro
,
N.
Belgacem
, and
D.
Chaussy
, “
Spontaneous capillary flow in curved, open microchannels
,”
Microfluid. Nanofluidics
20
,
100
(
2016
).
30.
J.
Berthier
,
K. A.
Brakke
,
D.
Gosselin
,
M.
Huet
, and
E.
Berthier
, “
Metastable capillary filaments in rectangular cross-section open microchannels
,”
AIMS Biophys.
1
(1),
31
(
2014
).
31.
R. K.
Lade
,
E. J.
Hippchen
,
C. W.
Macosko
, and
L. F.
Francis
, “
Dynamics of capillary-driven flow in 3D printed open microchannels
,”
Langmuir
33
(12),
2949
(
2017
).
32.
J.
Berthier
,
D.
Gosselin
, and
E.
Berthier
, “
A generalization of the Lucas–Washburn–Rideal law to composite microchannels of arbitrary cross section
,”
Microfluid. Nanofluid.
19
,
497
(
2015
).
33.
H.
Darcy
,
Les Fontaines Publiques de La Ville de Dijon
(
Paris
,
1856
).
34.
S.
Whitaker
, “
Flow in porous media I: A theoretical derivation of Darcy's law
,”
Transp. Porous Media
1
,
3
(
1986
).
35.
S. C.
Amico
and
C.
Lekakou
, “
Axial impregnation of a fiber bundle. Part 1: Capillary experiments
,”
Polym. Compos.
23
(
2
),
249
(
2002
).
36.
A.
Ashari
and
H.
Vahedi Tafreshi
, “
General capillary pressure and relative permeability expressions for through-plane fluid transport in thin fibrous sheets
,”
Colloids Surf., A
346
(
1–3
),
114
(
2009
).
37.
J. H.
Dane
,
C.
Hofstee
, and
A. T.
Corey
, “
Simultaneous measurement of capillary pressure, saturation, and effective permeability of immiscible liquids in porous media
,”
Water Resour. Res.
34
(12),
3687
, https://doi.org/10.1029/1998WR900026 (
1998
).
38.
A. J.
Babchin
,
R.
Bentsen
,
B.
Faybishenko
, and
M. B.
Geilikman
, “
On the capillary pressure function in porous media based on relative permeabilities of two immiscible fluids: Application of capillary bundle models and validation using experimental data
,”
Adv. Colloid Interface Sci
233
,
176
(
2016
).
39.
M. A. F.
Zarandi
,
K. M.
Pillai
, and
A. S.
Kimmel
, “
Spontaneous imbibition of liquids in glass-fiber wicks. Part I: Usefulness of a sharp-front approach
,”
AIChE J.
64
(1),
294
(
2018
).
40.
M.
Reches
,
K. A.
Mirica
,
R.
Dasgupta
,
M. D.
Dickey
,
M. J.
Butte
, and
G. M.
Whitesides
, “
Thread as a matrix for biomedical assays
,”
ACS Appl. Mater. Interfaces
2
(6),
1722
(
2010
).
41.
N.
Vasilakis
,
K. I.
Papadimitriou
,
H.
Morgan
, and
T.
Prodromakis
, “
High-performance PCB-based capillary pumps for affordable point-of-care diagnostics
,”
Microfluid. Nanofluid.
21
(6),
103
(
2017
).
42.
R.
Safavieh
,
A.
Tamayol
, and
D.
Juncker
, “
Serpentine and leading-edge capillary pumps for microfluidic capillary systems
,”
Microfluid. Nanofluid.
18
,
357
(
2015
).
43.
F.
Schaumburg
and
C. L. A.
Berli
, “
Assessing the rapid flow in multilayer paper-based microfluidic devices
,”
Microfluid. Nanofluid.
23
(
98
),
98
(
2019
).
44.
L.-J.
Yang
,
T.-J.
Yao
, and
Y.-C.
Tai
, “
The marching velocity of the capillary meniscus in a microchannel
,”
J. Micromech. Microeng.
14
,
220
(
2004
).
45.
N.
Goedecke
,
J.
Eijkel
, and
A.
Manz
, “
Evaporation driven pumping for chromatography application
,”
Lab Chip
2
(
4
),
219
(
2002
).
46.
C.
Nie
,
A. J. H.
Frijns
,
R.
Mandamparambil
, and
J. M. J.
den Toonder
, “
A microfluidic device based on an evaporation-driven micropump
,”
Biomed. Microdevices
17
,
47
(
2015
).
47.
H.
Liu
,
X.
Zhang
,
Z.
Hong
,
Z.
Pu
,
Q.
Yao
,
J.
Shi
,
G.
Yang
,
B.
Mi
,
B.
Yang
,
X.
Liu
,
H.
Jiang
, and
X.
Hu
, “
A bioinspired capillary-driven pump for solar vapor generation
,”
Nano Energy
42
,
115
(
2017
).
48.
S. B.
Berry
,
J. J.
Lee
,
J.
Berthier
,
E.
Berthier
, and
A. B.
Theberge
, “
Droplet incubation and splitting in open microfluidic channels
,”
Anal. Methods
11
(
35
),
4528
(
2019
).
49.
F. D.
Dosso
,
L.
Tripodi
,
D.
Spasic
,
T.
Kokalj
, and
J.
Lammertyn
, “
Innovative hydrophobic valve allows complex liquid manipulations in a self-powered channel-based microfluidic device
,”
ACS Sensors
4
(3),
694
(
2019
).
50.
E.
Elizalde
,
R.
Urteaga
, and
C. L. A.
Berli
, “
Rational design of capillary-driven flows for paper-based microfluidics
,”
Lab Chip
15
(
10
),
2173
(
2015
).

Supplementary Material

You do not currently have access to this content.