In this paper, the dynamic behavior of a self-propelled droplet along a conical fiber is simulated by using an improved lattice Boltzmann color-gradient method. This method is developed on the basis of our recently developed density ratio model [Zhang et al., Int. Commun. Heat Mass Transfer, 137, 106284 (2022).], but a wetting boundary condition is added to account for the moving contact line on an arbitrary solid surface. First, this method is validated against the analytical droplet shapes and contact angles for droplets surrounded by matrix fluids of different densities on flat and spherical surfaces, and the spontaneous transport of a droplet on a conical fiber. This method is then adopted to systematically study the effects of the Bond number ( B o), surface wettability ( θ), cone hemi-angle ( α), and droplet volume on the droplet dynamic behavior. In each case, the results show that the droplet climbing velocity first increases and then decreases, and a velocity fluctuation is observed, which is due to that the apparent receding and advancing contact angles do not simultaneously reach the equilibrium contact angle. As droplet volume increases, the equilibrium droplet height monotonically increases. As B o or θ increases, the droplet climbing height and the wetting area both decrease. We also found that the equilibrium climbing height first increases and then decreases with α, and its maximum is reached around α = 2.5 °.

1.
S.
Chen
,
Q.
Dai
,
X.
Yang
et al, “
Bioinspired functional structures for lubricant control at surfaces and interfaces: Wedged-groove with oriented capillary patterns
,”
ACS Appl. Mater. Interfaces
14
(
37
),
42635
42644
(
2022
).
2.
M. Y.
Chen
,
Z. H.
Jia
,
T.
Zhang
et al, “
Self-transport of underwater bubbles on a microholed hydrophobic surface with gradient wettability
,”
Soft Matter
14
,
7462
7468
(
2018
).
3.
X.
Yang
,
K.
Zhuang
,
Y.
Lu
et al, “
Creation of topological ultraslippery surfaces for droplet motion control
,”
ACS Nano
15
(
2
),
2589
2599
(
2021
).
4.
X.
Gong
,
X.
Gao
, and
L.
Jiang
, “
Recent progress in bionic condensate microdrop self-propelling surfaces
,”
Adv. Mater.
29
,
1703002
(
2017
).
5.
S.
Dhiman
,
K. S.
Jayaprakash
,
R.
Lqbal
et al, “
Self-transport and manipulation of aqueous droplets on oil-submerged diverging Groove
,”
Langmuir
34
(
41
),
12359
12368
(
2018
).
6.
W.
Liu
,
Y.
Lu
,
Y.
Shen
et al, “
Spontaneous transport mechanics of water droplets under a synergistic action of designed pattern and non-wetting gradient
,”
ACS Omega
8
(
18
),
16450
16458
(
2023
).
7.
S.
Lee
and
J.
Lee
, “
Improvement of humid air condensate drainage through bi-philic patterned surfaces
,”
Int. J. Heat Mass Transfer
194
,
123097
(
2022
).
8.
C.
Li
,
C.
Yu
,
D.
Hao
et al, “
Smart liquid transport on dual biomimetic surface via temperature fluctuation control
,”
Adv. Funct. Mater.
28
,
1707490
(
2018
).
9.
S.
Feng
,
J.
Delannoy
,
A.
Malod
et al, “
Tip-induced flipping of droplets on Janus pillars: From local reconfiguration to global transport
,”
Sci. Adv.
6
(
28
),
eabb4540
(
2020
).
10.
W.
Li
,
J.
Lu
,
G.
Tryggvason
et al, “
Numerical study of droplet motion on discontinuous wetting gradient surface with rough strip
,”
Phys. Fluids
33
,
012111
(
2021
).
11.
J.
Ji
,
Y.
Jiao
,
Q.
Song
et al, “
Bioinspired geometry-gradient metal slippery surface by one-step laser ablation for continuous liquid directional self-transport
,”
Langmuir
37
(
17
),
5436
5444
(
2021
).
12.
T. R.
Mitchell
,
M.
Majidi
,
M. H.
Rahimian
et al, “
Computational modeling of three-dimensional thermocapillary flow of recalcitrant bubbles using a coupled lattice Boltzmann-finite difference method
,”
Phys. Fluids
33
(
3
),
032108
(
2021
).
13.
J.
Farhadi
and
V.
Bazargan
, “
Marangoni flow and surfactant transport in evaporating sessile droplets: A lattice Boltzmann study
,”
Phys. Fluids
34
(
3
),
032115
(
2022
).
14.
C.
Chen
,
J.
Liu
,
Y.
Liu
et al, “
Simulation investigation of the spontaneous motion behaviors of underwater oil droplets on a conical surface
,”
Soft Matter
18
,
9172
9180
(
2022
).
15.
Y.
Chen
and
X.
Xu
, “
Self-propulsion dynamics of small droplets on general surfaces with curvature gradient
,”
Phys. Fluids
33
(
8
),
082107
(
2021
).
16.
C.
Wang
,
X.
Wu
,
H.
Zhang
et al, “
A many-body dissipative particle dynamics study of eccentric droplets impacting inclined fiber
,”
Phys. Fluids
33
(
4
),
042001
(
2021
).
17.
D.
Shi
,
Y.
Chen
,
X.
Chen
et al, “
Ladderlike tapered pillars enabling spontaneous and consecutive liquid transport
,”
ACS Appl. Mater. Interfaces
10
,
34735
34743
(
2018
).
18.
T. S.
Chan
,
F.
Yang
, and
A.
Carlson
, “
Directional spreading of viscous droplet on a conical fibre
,”
J. Fluid Mech.
894
,
A26
(
2020
).
19.
B. J.
Carroll
, “
The accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems
,”
J. Colloid Interface Sci.
57
(
3
),
488
495
(
1976
).
20.
E.
Lorenceau
and
D.
Quéré
, “
Drops on a conical wire
,”
J. Fluid Mech.
510
,
29
45
(
2004
).
21.
T.
Young
, “
An essay on the cohesion of fluids
,”
Philos. Trans
95
,
65
87
(
1805
).
22.
O. V.
Voinov
, “
Hydrodynamics of wetting
,”
Fluid Dyn.
11
,
714
721
(
1976
); available at https://link.springer.com/article/10.1007/BF01012963.
23.
J.
Eggers
, “
Hydrodynamic theory of forced dewetting
,”
Phys. Rev. Lett.
93
,
094502
(
2004
).
24.
Y.-E.
Liang
,
H.-K.
Tsao
, and
Y.-J.
Sheng
, “
Drops on hydrophilic conical fibers: Gravity effect and coexistent states
,”
Langmuir
31
(
5
),
1704
1710
(
2015
).
25.
P.
Galatola
, “
Spontaneous capillary propulsion of liquid droplets on substrates with nonuniform curvature
,”
Phys. Fluids
3
(
10
),
103601
(
2018
).
26.
C.
Lv
,
C.
Chen
,
Y.-C.
Chuang
et al, “
Substrate curvature gradient drives rapid droplet motion
,”
Phys. Rev. Lett.
113
(
2
),
026101
(
2014
).
27.
A.
Mukherjee
,
D. N.
Basu
, and
P. K.
Mondal
, “
Algorithmic augmentation in the pseudopotential-based lattice Boltzmann method for simulating the pool boiling phenomenon with high-density ratio
,”
Phys. Rev. E
103
,
053302
(
2021
).
28.
A.
Mukherjee
,
D. N.
Basu
, and
P. K.
Mondal
, “
Mesoscopic characterization of bubble dynamics in subcooled flow boiling following a pseudopotential-based approach
,”
Int. J. Multiphase Flow
148
,
103923
(
2022
).
29.
A.
Mukherjee
,
D. N.
Basu
,
P. K.
Mondal
et al, “
Characterization of condensation on nanostructured surfaces and associated thermal hydraulics using a thermal lattice Boltzmann method
,”
Phys. Rev. E
105
,
045308
(
2022
).
30.
Z. X.
Wen
,
Q.
Li
,
Y.
Yu
et al, “
Improved three-dimensional color-gradient lattice Boltzmann model for immiscible two-phase flows
,”
Phys. Rev. E
100
(
2
),
023301
(
2019
).
31.
J.
Zhang
,
W.
Zhao
,
H.
Liu
et al, “
Numerical study of surfactant effects on the rise of a single bubble and two coaxial bubbles
,”
Int. Commun. Heat Mass Transfer
137
,
106284
(
2022
).
32.
Z.
Xu
,
H.
Liu
, and
A. J.
Valocchi
, “
Lattice Boltzmann simulation of immiscible two-phase flow with capillary valve effect in porous media
,”
Water Resour. Res.
53
(
5
),
3770
3790
, https://doi.org/10.1002/2017WR020373 (
2017
).
33.
T.
Akai
,
B.
Bijeljic
, and
M. J.
Blunt
, “
Wetting boundary condition for the color-gradient lattice Boltzmann method: Validation with analytical and experimental data
,”
Adv. Water Resour.
116
,
56
66
(
2018
).
34.
D.
Jacqmin
, “
Calculation of two-phase Navier–Stokes flows using phase-field modeling
,”
J. Comput. Phys.
155
(
1
),
96
127
(
1999
).
35.
T.
Reis
and
T. N.
Phillips
, “
Lattice Boltzmann model for simulating immiscible two-phase flows
,”
J. Phys. A
40
(
14
),
4033
(
2007
).
36.
D.
Grunau
,
S.
Chen
, and
K.
Eggert
, “
A lattice Boltzmann model for multiphase fluid flows
,”
Phys. Fluids A
5
(
10
),
2557
2562
(
1993
).
37.
Q.
Li
,
D. H.
Du
,
L. L.
Fei
et al, “
Three-dimensional non-orthogonal MRT pseudopotential lattice Boltzmann model for multiphase flows
,”
Comput. Fluids
186
,
128
140
(
2019
).
38.
H.
Liu
,
J.
Zhang
,
Y.
Ba
et al, “
Modelling a surfactant-covered droplet on a solid surface in three-dimensional shear flow
,”
J. Fluid Mech.
897
,
A33
(
2020
).
39.
Y.
Ba
,
H.
Liu
,
Q.
Li
et al, “
Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio
,”
Phys. Rev. E
94
(
2
),
023310
(
2016
).
40.
X.
Fu
,
J.
Sun
, and
Y.
Ba
, “
Numerical study of droplet thermocapillary migration behavior on wettability-confined tracks using a three-dimensional color-gradient lattice Boltzmann model
,”
Phys. Fluids
34
(
1
),
012119
(
2022
).
41.
S.
Leclaire
,
K.
Abahri
,
R.
Belarbi
et al, “
Modeling of static contact angles with curved boundaries using a multiphase lattice Boltzmann method with variable density and viscosity ratios
,”
Int. J. Numer. Methods Fluids
82
(
8
),
451
470
(
2016
).
42.
M.
Xu
and
H.
Liu
, “
Prediction of immiscible two-phase flow properties in a two-dimensional Berea sandstone using the pore-scale lattice Boltzmann simulation
,”
Eur. Phys. J. E
41
,
124
(
2018
).
43.
Q.
Gu
,
H.
Liu
, and
L.
Wu
, “
Preferential imbibition in a dual-permeability pore network
,”
J. Fluid Mech.
915
,
A138
(
2021
).
44.
T.
Akai
,
M. J.
Blunt
, and
B.
Bijeljic
, “
Pore-scale numerical simulation of low salinity water flooding using the lattice Boltzmann method
,”
J. Colloid Interface Sci.
566
,
444
453
(
2020
).
45.
T.
Akai
,
A. M.
Alhammadi
,
M. J.
Blunt
et al, “
Modeling oil recovery in mixed-wet rocks: Pore-scale comparison between experiment and simulation
,”
Transp. Porous Media
127
,
393
414
(
2019
).
46.
J.
Zhang
,
H.
Liu
,
B.
Wei
et al, “
Pore-scale modeling of two-phase flows with soluble surfactants in porous media
,”
Energy Fuels
35
(
23
),
19374
19388
(
2021
).
47.
J.
Zhang
,
X.
Zhang
,
W.
Zhao
et al, “
Effect of surfactants on droplet generation in a microfluidic T-junction: A lattice Boltzmann study
,”
Phys. Fluids
34
(
4
),
042121
(
2022
).
48.
H.
Ding
,
M. N. H.
Gilani
, and
P. D. M.
Spelt
, “
Sliding, pinch-off and detachment of a droplet on a wall in shear flow
,”
J. Fluid Mech.
644
,
217
244
(
2010
).
49.
H.
Chen
,
O.
Filippova
,
J.
Hoch
et al, “
Grid refinement in lattice Boltzmann methods based on volumetric formulation
,”
Physica A
362
(
1
),
158
167
(
2006
).
50.
M.
Geier
,
A.
Greiner
, and
J. G.
Korvink
, “
Bubble functions for the lattice Boltzmann method and their application to grid refinement
,”
Eur. Phys. J.
171
(
1
),
173
179
(
2009
).
51.
R.
Huang
and
H.
Wu
, “
Total enthalpy-based lattice Boltzmann method with adaptive mesh refinement for solid-liquid phase change
,”
J. Comput. Phys.
315
,
65
83
(
2016
).
52.
F.
Bai
,
J.
Wu
,
G.
Gong
et al, “
Biomimetic ‘cactus spine’ with hierarchical groove structure for efficient fog collection
,”
Adv. Sci.
2
(
7
),
1500047
(
2015
).
You do not currently have access to this content.