Dynamic hemiwicking behavior is observable in both nature and a wide range of industrial applications ranging from biomedical devices to thermal management. We present a semi-analytical modeling framework (without empirical fitting coefficients) to predict transient capillary-driven hemiwicking behavior of a liquid through a nano/microstructured surface, specifically a micropillar array. In our model framework, the liquid domain is discretized into micropillar unit cells to enable the time marching of the hemiwicking front. A simplified linear pressure drop is assumed along the hemiwicking length such that the local meniscus curvature, contact angle, and effective liquid height are determined at each time step in our transient model. This semi-analytical model is validated with experimental data from our own experiments and from published literature for different fluids. Our model predicts hemiwicking dynamics with <20% error over a broad range of micropillar geometries with height-to-pitch ratio ranging between ≈0.34 and 6.7 and diameter-to-pitch ratio in the range of ≈0.25–0.7 and without any fitting parameters. For lower diameter-to-pitch ratio data points related to sparse micropillar array arrangements, we suggest modifications to the semi-analytical model. This work sheds light on complex and dynamic solid–liquid–vapor interfacial interactions which could serve as a guide for the design of textured surfaces for wicking enhancement in multi-phase thermal and mass transport technologies and applications.

1.
E.
Kissa
, “
Wetting and wicking
,”
Text. Res. J.
66
,
660
(
1996
).
2.
D.
Quéré
, “
Wetting and roughness
,”
Annu. Rev. Mater. Res.
38
,
71
(
2008
).
3.
X.
Feng
and
L.
Jiang
, “
Design and creation of superwetting/antiwetting surfaces
,”
Adv. Mater.
18
,
3063
(
2006
).
4.
H.
Shahariar
,
I.
Kim
,
H.
Soewardiman
, and
J. S.
Jur
, “
Inkjet printing of reactive silver ink on textiles
,”
ACS Appl. Mater. Interfaces
11
,
6208
(
2019
).
5.
Y.
Nam
,
S.
Sharratt
,
C.
Byon
,
S. J.
Kim
, and
Y. S.
Ju
, “
Fabrication and characterization of the capillary performance of superhydrophilic Cu micropost arrays
,”
J. Microelectromech. Syst.
19
,
581
(
2010
).
6.
C.
Zhang
and
C. H.
Hidrovo
, “
Investigation of nanopillar wicking capabilities for heat pipes applications
,” in
Proceedings of the ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer
(ASME, 2009), Vol.
3
, pp.
423
437
.
7.
C.
Oshman
,
Q.
Li
,
L.-A.
Liew
,
R.
Yang
,
Y.
Lee
,
V. M.
Bright
,
D. J.
Sharar
,
N. R.
Jankowski
, and
B. C.
Morgan
, “
Thermal performance of a flat polymer heat pipe heat spreader under high acceleration
,”
J. Micromech. Microeng.
22
,
045018
(
2012
).
8.
J.
Seo
,
D.
Kim
,
H.
Kim
, and
Y. A.
Hassan
, “
Design optimization of gap distance for the capillary limitation of a heat pipe with annular-type wick structure
,”
Phys. Fluids
34
,
067116
(
2022
).
9.
C.
Wang
,
M. M.
Rahman
, and
M.
Bucci
, “
Decrypting the mechanisms of wicking and evaporation heat transfer on micro-pillars during the pool boiling of water using high-resolution infrared thermometry
,”
Phys. Fluids
35
,
037112
(
2023
).
10.
Y.
Song
,
L.
Zhang
,
C. D.
Díaz-Marín
,
S. S.
Cruz
, and
E. N.
Wang
, “
Unified descriptor for enhanced critical heat flux during pool boiling of hemi-wicking surfaces
,”
Int. J. Heat Mass Transfer
183
,
122189
(
2022
).
11.
W.
Li
and
Y.
Joshi
, “
Capillary-assisted evaporation/boiling in PDMS microchannel integrated with wicking microstructures
,”
Langmuir
36
,
12143
(
2020
).
12.
R. P.
Zhang
,
M.
Mei
, and
H.
Qiu
, “
Effect of micropillar array morphology on liquid propagation coefficient enhancement
,”
Langmuir
39
,
3083
(
2023
).
13.
K. L.
Scott
,
T.
Hirano
,
H.
Yang
,
H.
Singh
,
R. T.
Howe
, and
A. M.
Niknejad
, “
High-performance inductors using capillary based fluidic self-assembly
,”
J. Microelectromech. Syst.
13
,
300
(
2004
).
14.
S. H.
Kim
,
D. B.
Asay
, and
M. T.
Dugger
, “
Nanotribology and MEMS
,”
Nano Today
2
,
22
(
2007
).
15.
E. W.
Washburn
, “
The dynamics of capillary flow
,”
Phys. Rev.
17
,
273
(
1921
).
16.
R.
Wang
and
D. S.
Antao
, “
Capillary-enhanced filmwise condensation in porous media
,”
Langmuir
34
,
13855
(
2018
).
17.
Z.
Wang
,
J.
Zhao
,
A.
Bagal
,
E. C.
Dandley
,
C. J.
Oldham
,
T.
Fang
,
G. N.
Parsons
, and
C.-H.
Chang
, “
Wicking enhancement in three-dimensional hierarchical nanostructures
,”
Langmuir
32
,
8029
(
2016
).
18.
R.
Shrestha
,
B.
Yu
,
Q.
Yang
,
W.
Gong
, and
S.
Shen
, “
Hierarchical micro-nanostructured surfaces for isotropic/anisotropic liquid transport
,”
Langmuir
36
,
1569
(
2020
).
19.
A.
Vorobyev
and
C.
Guo
, “
Laser turns silicon superwicking
,”
Opt. Express
18
,
6455
(
2010
).
20.
J.
Kim
,
M.-W.
Moon
, and
H.-Y.
Kim
, “
Capillary rise in superhydrophilic rough channels
,”
Phys. Fluids
32
,
032105
(
2020
).
21.
B.
Natarajan
,
A.
Jaishankar
,
M.
King
,
F.
Oktasendra
,
S. J.
Avis
,
A. R.
Konicek
,
G.
Wadsworth
,
A.
Jusufi
,
H.
Kusumaatmaja
, and
M. S.
Yeganeh
, “
Predicting hemiwicking dynamics on textured substrates
,”
Langmuir
37
,
188
(
2021
).
22.
J.
Bico
,
C.
Tordeux
, and
D.
Quéré
, “
Rough wetting
,”
Europhys. Lett.
55
,
214
(
2001
).
23.
C.
Ishino
,
M.
Reyssat
,
E.
Reyssat
,
K.
Okumura
, and
D.
Quere
, “
Wicking within forests of micropillars
,”
Europhys. Lett.
79
,
56005
(
2007
).
24.
K.
Hay
,
M.
Dragila
, and
J.
Liburdy
, “
Theoretical model for the wetting of a rough surface
,”
J. Colloid Interface Sci.
325
,
472
(
2008
).
25.
T. T.
Mai
,
C. Q.
Lai
,
H.
Zheng
,
K.
Balasubramanian
,
K. C.
Leong
,
P. S.
Lee
,
C.
Lee
, and
W. K.
Choi
, “
Dynamics of wicking in silicon nanopillars fabricated with interference lithography and metal-assisted chemical etching
,”
Langmuir
28
,
11465
(
2012
).
26.
N.
Srivastava
,
C.
Din
,
A.
Judson
,
N. C.
MacDonald
, and
C. D.
Meinhart
, “
A unified scaling model for flow through a lattice of microfabricated posts
,”
Lab Chip
10
,
1148
(
2010
).
27.
R.
Xiao
,
R.
Enright
, and
E. N.
Wang
, “
Prediction and optimization of liquid propagation in micropillar arrays
,”
Langmuir
26
,
15070
(
2010
).
28.
J.
Kim
,
M.-W.
Moon
, and
H.-Y.
Kim
, “
Dynamics of hemiwicking
,”
J. Fluid Mech.
800
,
57
(
2016
).
29.
S. R.
Krishnan
,
J.
Bal
, and
S. A.
Putnam
, “
A simple analytic model for predicting the wicking velocity in micropillar arrays
,”
Sci. Rep.
9
,
20074
(
2019
).
30.
R.
Wang
,
K.
Jakhar
, and
D. S.
Antao
, “
Unified modeling framework for thin-film evaporation from micropillar arrays capturing local interfacial effects
,”
Langmuir
35
,
12927
(
2019
).
31.
R.
Xiao
and
E. N.
Wang
, “
Microscale liquid dynamics and the effect on macroscale propagation in pillar arrays
,”
Langmuir
27
,
10360
(
2011
).
32.
Z.
Lu
,
D. J.
Preston
,
D. S.
Antao
,
Y.
Zhu
, and
E. N.
Wang
, “
Coexistence of pinning and moving on a contact line
,”
Langmuir
33
,
8970
(
2017
).
33.
S.
Somasundaram
,
Y.
Zhu
,
Z.
Lu
,
S.
Adera
,
H.
Bin
,
W.
Mengyao
,
C. S.
Tan
, and
E. N.
Wang
, “
Thermal design optimization of evaporator micropillar wicks
,”
Int. J. Therm. Sci.
134
,
179
(
2018
).
34.
D. S.
Antao
,
S.
Adera
,
Y.
Zhu
,
E.
Farias
,
R.
Raj
, and
E. N.
Wang
, “
Dynamic evolution of the evaporating liquid-vapor interface in micropillar arrays
,”
Langmuir
32
,
519
(
2016
).
35.
S.
Adera
,
D. S.
Antao
,
R.
Raj
, and
E. N.
Wang
, “
Design of micropillar wicks for thin-film evaporation
,”
Int. J. Heat Mass Transfer
101
,
280
(
2016
).
36.
Y.
Zhu
,
D. S.
Antao
,
K.-H.
Chu
,
S.
Chen
,
T. J.
Hendricks
,
T.
Zhang
, and
E. N.
Wang
, “
Surface structure enhanced microchannel flow boiling
,”
J. Heat Transfer
138
,
091501
(
2016
).
37.
H.
Brinkman
, “
A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles
,”
Appl. Sci. Res.
1
,
27
(
1949
).
38.
A. S.
Sangani
and
A.
Acrivos
, “
Slow flow past periodic arrays of cylinders with application to heat transfer
,”
Int. J. Multiphase Flow
8
,
193
(
1982
).
39.
M.
Muskat
, “
The flow of homogeneous fluids through porous media
,”
Soil Sci.
46
,
169
(
1938
).
40.
D.
Horner
,
S.
Ravi
, and
S.
Moghaddam
, “
Monoporous micropillar wick structures, II-optimization & theoretical limits
,”
Appl. Therm. Eng.
73
,
1378
(
2014
).
41.
S.
Ravi
,
R.
Dharmarajan
, and
S.
Moghaddam
, “
Physics of fluid transport in hybrid biporous capillary wicking microstructures
,”
Langmuir
32
,
8289
(
2016
).

Supplementary Material

You do not currently have access to this content.