In this research, we have developed a computational method for droplet sorting using a non-uniform electric field. The method is based on a three-dimensional level-set method and the leaky-dielectric electrohydrodynamics (EHD) model. Level-set method is used for modeling the interface of the two-phase flow system. The electrostatic phenomenon is dealt with the leaky dielectric-leaky dielectric fluid system. At first, we validated our developed model for a classical flow case: a droplet subjected to a uniform electric field. The results obtained from the present computational method show good agreement with the existing results from the literature. After validation, we implemented the developed code in a practical application of droplet sorting using a non-uniform electric field (known as dielectrophoresis) in a rectangular microchannel with an orthogonal side channel. We mainly focus on the sorting of the droplet without and with the electric field effect as a function of different parameters of the problem. Depending on the intensity of the physical parameters, the droplet can flow into either the downstream main channel or it can sort into the orthogonal side branch. The sorting of a droplet is characterized by the critical branch ratio, qc above which the droplet enters the side branch. The results and conclusions from the present thesis facilitate the understanding of the fundamental principles and mechanisms of electrohydrodynamics (EHD)-based droplet sorting using dielectrophoresis in microfluidic channels. Therefore, present results can have potential usefulness toward the design and development of droplet-based microfluidic devices.

1.
O. A.
Basaran
,
H.
Gao
, and
P. P.
Bhat
, “
Nonstandard inkjets
,”
Annu. Rev. Fluid Mech.
45
,
85
113
(
2013
).
2.
Z.-M.
Huang
,
Y.-Z.
Zhang
,
M.
Kotaki
, and
S.
Ramakrishna
, “
A review on polymer nanofibers by electrospinning and their applications in nanocomposites
,”
Compos. Sci. Technol.
63
,
2223
2253
(
2003
).
3.
J.
Shrimpton
and
A.
Yule
, “
Characterisation of charged hydrocarbon sprays for application in combustion systems
,”
Exp. Fluids
26
,
460
469
(
1999
).
4.
J. B.
Fenn
,
M.
Mann
,
C. K.
Meng
,
S. F.
Wong
, and
C. M.
Whitehouse
, “
Electrospray ionization for mass spectrometry of large biomolecules
,”
Science
246
,
64
71
(
1989
).
5.
N. A.
Brown
,
J. N.
Gladstone
, and
P. R.
Chiarot
, “
Materials printing using electrospray
,” in
ASME 2014 International Mechanical Engineering Congress and Exposition
(
American Society of Mechanical Engineers
,
2014
), Paper No.
V02BT02A049
.
6.
M.
Windbergs
,
Y.
Zhao
,
J.
Heyman
, and
D. A.
Weitz
, “
Biodegradable core–shell carriers for simultaneous encapsulation of synergistic actives
,”
J. Am. Chem. Soc.
135
,
7933
7937
(
2013
).
7.
S. S.
Datta
,
A.
Abbaspourrad
,
E.
Amstad
,
J.
Fan
,
S.-H.
Kim
,
M.
Romanowsky
,
H. C.
Shum
,
B.
Sun
,
A. S.
Utada
,
M.
Windbergs
et al, “
25th anniversary article: Double emulsion templated solid microcapsules: Mechanics and controlled release
,”
Adv. Mater.
26
,
2205
2218
(
2014
).
8.
Y.
Zhang
,
Y.-P.
Ho
,
Y.-L.
Chiu
,
H. F.
Chan
,
B.
Chlebina
,
T.
Schuhmann
,
L.
You
, and
K. W.
Leong
, “
A programmable microenvironment for cellular studies via microfluidics-generated double emulsions
,”
Biomaterials
34
,
4564
4572
(
2013
).
9.
C. B.
Chang
,
J. N.
Wilking
,
S.-H.
Kim
,
H. C.
Shum
, and
D. A.
Weitz
, “
Monodisperse emulsion drop microenvironments for bacterial biofilm growth
,”
Small
11
,
3954
3961
(
2015
).
10.
T. H.
Niepa
,
L.
Hou
,
H.
Jiang
,
M.
Goulian
,
H.
Koo
,
K. J.
Stebe
, and
D.
Lee
, “
Microbial nanoculture as an artificial microniche
,”
Sci. Rep.
6
,
30578
(
2016
).
11.
M.
Sivaramakrishnan
,
R.
Kothandan
,
D. K.
Govindarajan
,
Y.
Meganathan
, and
K.
Kandaswamy
, “
Active microfluidic systems for cell sorting and separation
,”
Curr. Opin. Biomed. Eng.
13
,
60
68
(
2020
).
12.
M.
Jacquemond
,
N.
Jeckelmann
,
L.
Ouali
, and
O. P.
Haefliger
, “
Perfume-containing polyurea microcapsules with undetectable levels of free isocyanates
,”
J. Appl. Polym. Sci.
114
,
3074
3080
(
2009
).
13.
T.
Feczkó
,
V.
Kokol
, and
B.
Voncina
, “
Preparation and characterization of ethylcellulose-based microcapsules for sustaining release of a model fragrance
,”
Macromol. Res.
18
,
636
640
(
2010
).
14.
G.
Muschiolik
, “
Multiple emulsions for food use
,”
Curr. Opin. Colloid Interface Sci.
12
,
213
220
(
2007
).
15.
J. J.
Agresti
,
E.
Antipov
,
A. R.
Abate
,
K.
Ahn
,
A. C.
Rowat
,
J.-C.
Baret
,
M.
Marquez
,
A. M.
Klibanov
,
A. D.
Griffiths
, and
D. A.
Weitz
, “
Ultrahigh-throughput screening in drop-based microfluidics for directed evolution
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
4004
4009
(
2010
).
16.
K.
Ahn
,
C.
Kerbage
,
T. P.
Hunt
,
R.
Westervelt
,
D. R.
Link
, and
D. A.
Weitz
, “
Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices
,”
Appl. Phys. Lett.
88
,
024104
(
2006
).
17.
E.
Brouzes
,
T.
Kruse
,
R.
Kimmerling
, and
H. H.
Strey
, “
Rapid and continuous magnetic separation in droplet microfluidic devices
,”
Lab Chip
15
,
908
919
(
2015
).
18.
A.
Ali-Cherif
,
S.
Begolo
,
S.
Descroix
,
J.-L.
Viovy
, and
L.
Malaquin
, “
Programmable magnetic tweezers and droplet microfluidic device for high-throughput nanoliter multi-step assays
,”
Angew. Chem.
124
,
10923
10927
(
2012
).
19.
J.
Park
,
J. H.
Jung
,
K.
Park
,
G.
Destgeer
,
H.
Ahmed
,
R.
Ahmad
, and
H. J.
Sung
, “
On-demand acoustic droplet splitting and steering in a disposable microfluidic chip
,”
Lab Chip
18
,
422
432
(
2018
).
20.
S.
Li
,
X.
Ding
,
F.
Guo
,
Y.
Chen
,
M. I.
Lapsley
,
S.-C. S.
Lin
,
L.
Wang
,
J. P.
McCoy
,
C. E.
Cameron
, and
T. J.
Huang
, “
An on-chip, multichannel droplet sorter using standing surface acoustic waves
,”
Anal. Chem.
85
,
5468
5474
(
2013
).
21.
S.
Cheng
and
S.
Chandra
, “
A pneumatic droplet-on-demand generator
,”
Exp. Fluids
34
,
755
762
(
2003
).
22.
C.
Huang
,
W.
Fang
,
M.
Ke
,
H.
Chou
, and
J.
Yang
, “
A biocompatible open-surface droplet manipulation platform for detection of multi-nucleotide polymorphism
,”
Lab Chip
14
,
2057
2062
(
2014
).
23.
N. G.
Green
,
H.
Morgan
, and
J. J.
Milner
, “
Manipulation and trapping of sub-micron bioparticles using dielectrophoresis
,”
J. Biochem. Biophys. Methods
35
,
89
102
(
1997
).
24.
T.
Schnelle
,
T.
Müller
, and
G.
Fuhr
, “
Trapping in ac octode field cages
,”
J. Electrost.
50
,
17
29
(
2000
).
25.
J.
Voldman
,
M.
Toner
,
M.
Gray
, and
M.
Schmidt
, “
Design and analysis of extruded quadrupolar dielectrophoretic traps
,”
J. Electrost.
57
,
69
90
(
2003
).
26.
Y.
Kang
,
D.
Li
,
S. A.
Kalams
, and
J. E.
Eid
, “
Dc-dielectrophoretic separation of biological cells by size
,”
Biomed. Microdevices
10
,
243
249
(
2008
).
27.
J. E.
Gordon
,
Z.
Gagnon
, and
H.-C.
Chang
, “
Dielectrophoretic discrimination of bovine red blood cell starvation age by buffer selection and membrane cross-linking
,”
Biomicrofluidics
1
,
044102
(
2007
).
28.
J.
Park
,
B.
Kim
,
S. K.
Choi
,
S.
Hong
,
S. H.
Lee
, and
K.-I.
Lee
, “
An efficient cell separation system using 3D-asymmetric microelectrodes
,”
Lab Chip
5
,
1264
1270
(
2005
).
29.
J.
Kadaksham
,
P.
Singh
, and
N.
Aubry
, “
Dielectrophoresis induced clustering regimes of viable yeast cells
,”
Electrophoresis
26
,
3738
3744
(
2005
).
30.
G. H.
Markx
,
Y.
Huang
,
X.-F.
Zhou
, and
R.
Pethig
, “
Dielectrophoretic characterization and separation of micro-organisms
,”
Microbiology
140
,
585
591
(
1994
).
31.
G. O.
Parikesit
,
A. P.
Markesteijn
,
O. M.
Piciu
,
A.
Bossche
,
J.
Westerweel
,
I. T.
Young
, and
Y.
Garini
, “
Size-dependent trajectories of DNA macromolecules due to insulative dielectrophoresis in submicrometer-deep fluidic channels
,”
Biomicrofluidics
2
,
024103
(
2008
).
32.
F.
Grom
,
J.
Kentsch
,
T.
Müller
,
T.
Schnelle
, and
M.
Stelzle
, “
Accumulation and trapping of hepatitis a virus particles by electrohydrodynamic flow and dielectrophoresis
,”
Electrophoresis
27
,
1386
1393
(
2006
).
33.
A.
Docoslis
,
L. A.
Tercero Espinoza
,
B.
Zhang
,
L.-L.
Cheng
,
B. A.
Israel
,
P.
Alexandridis
, and
N. L.
Abbott
, “
Using nonuniform electric fields to accelerate the transport of viruses to surfaces from media of physiological ionic strength
,”
Langmuir
23
,
3840
3848
(
2007
).
34.
B. H.
Lapizco-Encinas
,
B. A.
Simmons
,
E. B.
Cummings
, and
Y.
Fintschenko
, “
Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water
,”
Electrophoresis
25
,
1695
1704
(
2004
).
35.
H.
Song
,
V.
Mulukutla
,
C. D.
James
, and
D. J.
Bennett
, “
Continuous-mode dielectrophoretic gating for highly efficient separation of analytes in surface micromachined microfluidic devices
,”
J. Micromech. Microeng.
18
,
125013
(
2008
).
36.
L.
Yang
,
P. P.
Banada
,
A. K.
Bhunia
, and
R.
Bashir
, “
Effects of dielectrophoresis on growth, viability and immuno-reactivity of listeria monocytogenes
,”
J. Biol. Eng.
2
,
6
14
(
2008
).
37.
P. R.
Chiarot
,
P.
Sullivan
, and
R. B.
Mrad
, “
An overview of electrospray applications in mems and microfluidic systems
,”
J. Microelectromech. Syst.
20
,
1241
1249
(
2011
).
38.
E. A.
Henslee
, “
Dielectrophoresis in cell characterization
,”
Electrophoresis
41
,
1915
1930
(
2020
).
39.
G. I.
Russo
,
N.
Musso
,
A.
Romano
,
G.
Caruso
,
S.
Petralia
,
L.
Lanzanò
,
G.
Broggi
, and
M.
Camarda
, “
The role of dielectrophoresis for cancer diagnosis and prognosis
,”
Cancers
14
,
198
(
2021
).
40.
H. A.
Pohl
,
Dielectrophoresis: Behavior Neutral Matter Nonuniform Electric Fields
(
Cambridge University Press
,
1978
).
41.
J. Q.
Feng
, “
Dielectrophoresis of a deformable fluid particle in a nonuniform electric field
,”
Phys. Rev. E
54
,
4438
(
1996
).
42.
J.-C.
Baret
,
O. J.
Miller
,
V.
Taly
,
M.
Ryckelynck
,
A.
El-Harrak
,
L.
Frenz
,
C.
Rick
,
M. L.
Samuels
,
J. B.
Hutchison
,
J. J.
Agresti
et al, “
Fluorescence-activated droplet sorting (fads): Efficient microfluidic cell sorting based on enzymatic activity
,”
Lab Chip
9
,
1850
1858
(
2009
).
43.
M. H.
Loo
,
Y.
Nakagawa
,
S. H.
Kim
,
A.
Isozaki
, and
K.
Goda
, “
High-throughput sorting of nanoliter droplets enabled by a sequentially addressable dielectrophoretic array
,”
Electrophoresis
43
,
477
486
(
2022
).
44.
D. R.
Link
,
E.
Grasland-Mongrain
,
A.
Duri
,
F.
Sarrazin
,
Z.
Cheng
,
G.
Cristobal
,
M.
Marquez
, and
D. A.
Weitz
, “
Electric control of droplets in microfluidic devices
,”
Angew. Chem. Int. Ed.
45
,
2556
2560
(
2006
).
45.
S.
Mhatre
and
R. M.
Thaokar
, “
Drop motion, deformation, and cyclic motion in a non-uniform electric field in the viscous limit
,”
Phys. Fluids
25
,
072105
(
2013
).
46.
J. C.
McDonald
,
D. C.
Duffy
,
J. R.
Anderson
,
D. T.
Chiu
,
H.
Wu
,
O. J.
Schueller
, and
G. M.
Whitesides
, “
Fabrication of microfluidic systems in poly (dimethylsiloxane)
,”
Electrophoresis
21
,
27
40
(
2000
).
47.
D. C.
Duffy
,
J. C.
McDonald
,
O. J.
Schueller
, and
G. M.
Whitesides
, “
Rapid prototyping of microfluidic systems in poly (dimethylsiloxane)
,”
Anal. Chem.
70
,
4974
4984
(
1998
).
48.
M. A.
Unger
,
H.-P.
Chou
,
T.
Thorsen
,
A.
Scherer
, and
S. R.
Quake
, “
Monolithic microfabricated valves and pumps by multilayer soft lithography
,”
science
288
,
113
116
(
2000
).
49.
Y.
Ai
and
S.
Qian
, “
Dc dielectrophoretic particle–particle interactions and their relative motions
,”
J. Colloid Interface Sci.
346
,
448
454
(
2010
).
50.
Y.
Liu
,
W. K.
Liu
,
T.
Belytschko
,
N.
Patankar
,
A. C.
To
,
A.
Kopacz
, and
J.-H.
Chung
, “
Immersed electrokinetic finite element method
,”
Int. J. Numer. Methods Eng.
71
,
379
405
(
2007
).
51.
A.
Al-Jarro
,
J.
Paul
,
D.
Thomas
,
J.
Crowe
,
N.
Sawyer
,
F.
Rose
, and
K.
Shakesheff
, “
Direct calculation of Maxwell stress tensor for accurate trajectory prediction during dep for 2D and 3D structures
,”
J. Phys. D: Appl. Phys.
40
,
71
(
2007
).
52.
D. V.
Le
,
C.
Rosales
,
B. C.
Khoo
, and
J.
Peraire
, “
Numerical design of electrical-mechanical traps
,”
Lab Chip
8
,
755
763
(
2008
).
53.
H. S.
Amini
and
A.
Mohammadi
, “
Microparticle separation using dielectrophoresis-assisted inertial microfluidics: A GPU-accelerated immersed boundary–lattice Boltzmann simulation
,”
Phys. Rev. E
107
,
035307
(
2023
).
54.
R.
Derakhshan
,
A.
Ghasemi
,
R.
Moradi
, and
A.
Ramiar
, “
Design and numerical investigation of a circular microchannel for particle/cell separation using dielectrophoresis
,”
Adv. Powder Technol.
34
,
104046
(
2023
).
55.
N. G.
Green
,
A.
Ramos
, and
H.
Morgan
, “
Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method
,”
J. Electrost.
56
,
235
254
(
2002
).
56.
H.
Li
and
R.
Bashir
, “
On the design and optimization of micro-fluidic dielectrophoretic devices: A dynamic simulation study
,”
Biomed. Microdevices
6
,
289
295
(
2004
).
57.
J.
Hua
,
L. K.
Lim
, and
C.-H.
Wang
, “
Numerical simulation of deformation/motion of a drop suspended in viscous liquids under influence of steady electric fields
,”
Phys. Fluids
20
,
113302
(
2008
).
58.
J.
López-Herrera
,
S.
Popinet
, and
M.
Herrada
, “
A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid
,”
J. Comput. Phys.
230
,
1939
1955
(
2011
).
59.
M. A.
Halim
and
A.
Esmaeeli
, “
Computational studies on the transient electrohydrodynamics of a liquid drop
,”
Fluid Dyn. Mater. Process
9
,
435
460
(
2013
).
60.
G. I.
Taylor
, “
Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field
,”
Proc. R. Soc. London, Ser. A
291
,
159
166
(
1966
).
61.
O.
Ajayi
, “
A note on Taylor's electrohydrodynamic theory
,”
Proc. R. Soc. London, A
364
,
499
507
(
1978
).
62.
S.
Torza
,
R.
Cox
, and
S.
Mason
, “
Electrohydrodynamic deformation and bursts of liquid drops
,”
Philos. Trans. R. Soc. London, Ser. A
269
,
295
319
(
1971
).
63.
E.
Lac
and
G.
Homsy
, “
Axisymmetric deformation and stability of a viscous drop in a steady electric field
,”
J. Fluid Mech.
590
,
239
264
(
2007
).
64.
J. C.
Baygents
,
N.
Rivette
, and
H. A.
Stone
, “
Electrohydrodynamic deformation and interaction of drop pairs
,”
J. Fluid Mech.
368
,
359
375
(
1998
).
65.
J.
Melcher
, “
Electrohydrodynamics: A review of the role of interfacial shear stresses
,”
Ann. Rev. Fluid Mech.
1
,
111
146
(
1969
).
66.
P. F.
Salipante
and
P. M.
Vlahovska
, “
Electrohydrodynamics of drops in strong uniform dc electric fields
,”
Phys. Fluids
22
,
112110
(
2010
).
67.
J.-W.
Ha
and
S.-M.
Yang
, “
Deformation and breakup of Newtonian and non-Newtonian conducting drops in an electric field
,”
J. Fluid Mech.
405
,
131
156
(
2000
).
68.
L. M.
Barrett
,
A. J.
Skulan
,
A. K.
Singh
,
E. B.
Cummings
, and
G. J.
Fiechtner
, “
Dielectrophoretic manipulation of particles and cells using insulating ridges in faceted prism microchannels
,”
Anal. Chem.
77
,
6798
6804
(
2005
).
69.
E. G.
Puckett
,
A. S.
Almgren
,
J. B.
Bell
,
D. L.
Marcus
, and
W. J.
Rider
, “
A high-order projection method for tracking fluid interfaces in variable density incompressible flows
,”
J. Comput. Phys.
130
,
269
282
(
1997
).
You do not currently have access to this content.