The non-kinetic models typically offer a more straightforward approach than the complex kinetic models for microchannel gas flow problems. However, their applicability has traditionally been limited to a certain range of rarefaction. Hence, various modifications, including the slip boundary condition, non-linear viscosity, and diffusion phenomena, have been proposed. Although less explored, the wall-to-wall collision effect is also suggested for modifying the description of rarefied flow in confined areas. This paper presents a comprehensive non-kinetic approach for rarefied gas flow between parallel plates, covering a wide range of Knudsen numbers. This work integrates existing modifications and introduces new insights, specifically how gas particles specularly reflected from the walls impact the non-linear scaling functions for modifying the viscosity and diffusivity, and how to incorporate the wall-to-wall collision effect into the slip boundary condition. The uniform and cosine-law diffuse reflection models for gas–surface interaction are also compared and discussed. The proposed model is suitable for partially specular reflected gas–surface interactions and moving wall conditions, validated against classical Poiseuille and Couette flow problems. Overall, our findings expand the applicability of the non-kinetic model and enhance its accuracy in describing gas flow in confined spaces for more general conditions.

1.
M.
Schouler
,
Y.
Prévereaud
, and
L.
Mieussens
, “
Survey of flight and numerical data of hypersonic rarefied flows encountered in earth orbit and atmospheric reentry
,”
Prog. Aerosp. Sci.
118
,
100638
(
2020
).
2.
S.
Livadiotti
,
N. H.
Crisp
,
P. C.
Roberts
,
S. D.
Worrall
,
V. T.
Oiko
,
S.
Edmondson
,
S. J.
Haigh
,
C.
Huyton
,
K. L.
Smith
,
L. A.
Sinpetru
et al, “
A review of gas-surface interaction models for orbital aerodynamics applications
,”
Prog. Aerosp. Sci.
119
,
100675
(
2020
).
3.
M.
Bao
and
H.
Yang
, “
Squeeze film air damping in MEMS
,”
Sens. Actuators, A
136
,
3
27
(
2007
).
4.
X.
Wang
,
T.
Su
,
W.
Zhang
,
Z.
Zhang
, and
S.
Zhang
, “
Knudsen pumps: A review
,”
Microsyst. Nanoeng.
6
,
1
28
(
2020
).
5.
A.
Taghavinejad
,
M.
Sharifi
,
E.
Heidaryan
,
K.
Liu
, and
M.
Ostadhassan
, “
Flow modeling in shale gas reservoirs: A comprehensive review
,”
J. Nat. Gas Sci. Eng.
83
,
103535
(
2020
).
6.
F.
Javadpour
,
H.
Singh
,
A.
Rabbani
,
M.
Babaei
, and
S.
Enayati
, “
Gas flow models of shale: A review
,”
Energy Fuels
35
,
2999
3010
(
2021
).
7.
S.
Akilu
,
E.
Padmanabhan
, and
Z.
Sun
, “
A review of transport mechanisms and models for unconventional tight shale gas reservoir systems
,”
Int. J. Heat Mass Transfer
175
,
121125
(
2021
).
8.
J.
Henningsen
and
J.
Hald
, “
Dynamics of gas flow in hollow core photonic bandgap fibers
,”
Appl. Opt.
47
,
2790
2797
(
2008
).
9.
B. M.
Masum
,
S. M.
Aminossadati
,
M. S.
Kizil
, and
C. R.
Leonardi
, “
Numerical and experimental investigations of pressure-driven gas flow in hollow-core photonic crystal fibers
,”
Appl. Opt.
58
,
963
972
(
2019
).
10.
Y.-C.
Chen
,
S.-C.
Fang
,
H.-H.
Lin
,
J.-W.
Dong
, and
Y.-H.
Chen
, “
Investigation of alkali vapor diffusion characteristics through microchannels
,”
Phys. Fluids
34
,
072004
(
2022
).
11.
F.
Sharipov
and
V.
Seleznev
, “
Data on internal rarefied gas flows
,”
J. Phys. Chem. Ref. Data
27
,
657
706
(
1998
).
12.
J.
Wang
,
L.
Chen
,
Q.
Kang
, and
S. S.
Rahman
, “
The lattice Boltzmann method for isothermal micro-gaseous flow and its application in shale gas flow: A review
,”
Int. J. Heat Mass Transfer
95
,
94
108
(
2016
).
13.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Oxford University Press
,
1994
).
14.
P. S.
Prasanth
and
J. K.
Kakkassery
, “
Direct simulation Monte Carlo (DSMC): A numerical method for transition-regime flows—A review
,”
J. Indian Inst. Sci.
86
,
169
192
(
2006
).
15.
D. C.
Rapaport
and
D. C. R.
Rapaport
,
The Art of Molecular Dynamics Simulation
(
Cambridge University Press
,
2004
).
16.
A.
Beskok
,
G. E.
Karniadakis
, and
W.
Trimmer
, “
Rarefaction and compressibility effects in gas microflows
,”
J. Fluids Eng.
118
,
448
456
(
1996
).
17.
E. B.
Arkilic
,
M. A.
Schmidt
, and
K. S.
Breuer
, “
Gaseous slip flow in long microchannels
,”
J. Microelectromech. Syst.
6
,
167
178
(
1997
).
18.
J.
Maurer
,
P.
Tabeling
,
P.
Joseph
, and
H.
Willaime
, “
Second-order slip laws in microchannels for helium and nitrogen
,”
Phys. Fluids
15
,
2613
2621
(
2003
).
19.
S.
Colin
,
P.
Lalonde
, and
R.
Caen
, “
Validation of a second-order slip flow model in rectangular microchannels
,”
Heat Transfer Eng.
25
,
23
30
(
2004
).
20.
T.
Ewart
,
P.
Perrier
,
I. A.
Graur
, and
J. G.
Méolans
, “
Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes
,”
J. Fluid Mech.
584
,
337
356
(
2007
).
21.
V.
Hemadri
,
A.
Agrawal
, and
U.
Bhandarkar
, “
Determination of tangential momentum accommodation coefficient and slip coefficients for rarefied gas flow in a microchannel
,”
Sādhanā
43
,
164
(
2018
).
22.
Q.
Fan
and
H.
Xue
, “
A new analytic solution of the Navier-Stokes equations for microchannel flows
,”
Microscale Thermophys. Eng.
4
,
125
143
(
2000
).
23.
S.
Shen
,
G.
Chen
,
R. M.
Crone
, and
M.
Anaya-Dufresne
, “
A kinetic-theory based first order slip boundary condition for gas flow
,”
Phys. Fluids
19
,
086101
(
2007
).
24.
H.
Zhang
,
Z.
Zhang
,
Y.
Zheng
, and
H.
Ye
, “
Corrected second-order slip boundary condition for fluid flows in nanochannels
,”
Phys. Rev. E
81
,
066303
(
2010
).
25.
H.
Brenner
, “
Beyond the no-slip boundary condition
,”
Phys. Rev. E
84
,
046309
(
2011
).
26.
Z.
Guo
,
J.
Qin
, and
C.
Zheng
, “
Generalized second-order slip boundary condition for nonequilibrium gas flows
,”
Phys. Rev. E
89
,
013021
(
2014
).
27.
K.
Wu
,
Z.
Chen
,
X.
Li
,
C.
Guo
, and
M.
Wei
, “
A model for multiple transport mechanisms through nanopores of shale gas reservoirs with real gas effect–adsorption-mechanic coupling
,”
Int. J. Heat Mass Transfer
93
,
408
426
(
2016
).
28.
S.
Wang
,
A. A.
Lukyanov
,
L.
Wang
,
Y.-S.
Wu
,
A.
Pomerantz
,
W.
Xu
, and
R.
Kleinberg
, “
A non-empirical gas slippage model for low to moderate Knudsen numbers
,”
Phys. Fluids
29
,
012004
(
2017
).
29.
A. M.
Tomy
and
S. K.
Dadzie
, “
Diffusion-slip boundary conditions for isothermal flows in micro-and nano-channels
,”
Micromachines
13
,
1425
(
2022
).
30.
W.-M.
Zhang
,
G.
Meng
, and
X.
Wei
, “
A review on slip models for gas microflows
,”
Microfluid. Nanofluid.
13
,
845
882
(
2012
).
31.
J.-W.
Dong
and
C.-Y.
Huang
, “
Integrating multiple physical properties of microchannel gas flow to extend the Navier–Stokes equations over a wide Knudsen number range
,”
Phys. Fluids
33
,
092006
(
2021
).
32.
M.
Knudsen
, “
Eine revision der gleichgewichtsbedingung der gase. thermische molekularströmung
,”
Ann. Phys.
336
,
205
229
(
1909
).
33.
M.
Smoluchowski
,
Contributions to the Theory of Transpiration, Diffusion and Thermal Conduction in Rarefied Gases
(
Imprimerie de l'Université
,
1910
).
34.
S.
Chapman
, “
V. on the kinetic theory of a gas. Part II.—A composite monatomic gas: Diffusion, viscosity, and thermal conduction
,”
Philos. Trans. R. Soc., A
217
,
115
197
(
1918
).
35.
W.
Pollard
and
R. D.
Present
, “
On gaseous self-diffusion in long capillary tubes
,”
Phys. Rev.
73
,
762
(
1948
).
36.
H.
Brenner
, “
Navier–Stokes revisited
,”
Phys. A
349
,
60
132
(
2005
).
37.
F.
Durst
,
J.
Gomes
, and
R.
Sambasivam
, “
Thermofluiddynamics: Do we solve the right kind of equations?
” in
Turbulence Heat and Mass Transfer 5: Proceedings of the International Symposium on Turbulence Heat and Mass Transfer
(
Begel House, Inc.
,
2006
).
38.
N.
Dongari
,
A.
Sharma
, and
F.
Durst
, “
Pressure-driven diffusive gas flows in micro-channels: From the Knudsen to the continuum regimes
,”
Microfluid. Nanofluid.
6
,
679
692
(
2009
).
39.
S. K.
Dadzie
and
H.
Brenner
, “
Predicting enhanced mass flow rates in gas microchannels using nonkinetic models
,”
Phys. Rev. E
86
,
036318
(
2012
).
40.
T.
Veltzke
and
J.
Thöming
, “
An analytically predictive model for moderately rarefied gas flow
,”
J. Fluid Mech.
698
,
406
422
(
2012
).
41.
R.
Sambasivam
, “
Extended Navier-Stokes equations: Derivations and applications to fluid flow problems
,” Ph.D. thesis,
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
,
2013
.
42.
Q.
Lv
,
X.
Liu
,
E.
Wang
, and
S.
Wang
, “
Analytical solution to predicting gaseous mass flow rates of microchannels in a wide range of Knudsen numbers
,”
Phys. Rev. E
88
,
013007
(
2013
).
43.
M. L.
Reddy
,
S. K.
Dadzie
,
R.
Ocone
,
M. K.
Borg
, and
J. M.
Reese
, “
Recasting Navier–Stokes equations
,”
J. Phys. Commun.
3
,
105009
(
2019
).
44.
S.
Kunze
,
R.
Groll
,
B.
Besser
, and
J.
Thöming
, “
Molecular diameters of rarefied gases
,”
Sci. Rep.
12
,
2057
(
2022
).
45.
D. A.
Lockerby
,
J. M.
Reese
, and
M. A.
Gallis
, “
Capturing the Knudsen layer in continuum-fluid models of nonequilibrium gas flows
,”
AIAA J.
43
,
1391
1393
(
2005
).
46.
J. M.
Reese
,
Y.
Zheng
, and
D. A.
Lockerby
, “
Computing the near-wall region in gas micro-and nanofluidics: Critical Knudsen layer phenomena
,”
J. Comput. Theor. Nanosci.
4
,
807
813
(
2007
).
47.
C. R.
Lilley
and
J. E.
Sader
, “
Velocity gradient singularity and structure of the velocity profile in the Knudsen layer according to the Boltzmann equation
,”
Phys. Rev. E
76
,
026315
(
2007
).
48.
D. A.
Lockerby
and
J. M.
Reese
, “
On the modelling of isothermal gas flows at the microscale
,”
J. Fluid Mech.
604
,
235
261
(
2008
).
49.
J.-M.
Li
,
B.-X.
Wang
, and
X.-F.
Peng
, “
A model for predicting laminar gas flow through micropassages
,”
J. Therm. Sci.
6
,
279
285
(
1997
).
50.
D.
Stops
, “
The mean free path of gas molecules in the transition regime
,”
J. Phys. D: Appl. Phys.
3
,
685
(
1970
).
51.
E. J.
Arlemark
,
S. K.
Dadzie
, and
J. M.
Reese
, “
An extension to the Navier–Stokes equations to incorporate gas molecular collisions with boundaries
,”
J. Heat Transfer
132
,
041006
(
2010
).
52.
N.
Dongari
,
Y.
Zhang
, and
J. M.
Reese
, “
Modeling of Knudsen layer effects in micro/nanoscale gas flows
,”
J. Fluids Eng.
133
,
071101
(
2011
).
53.
R. V.
Abramov
, “
Gas near a wall: Shortened mean free path, reduced viscosity, and the manifestation of the Knudsen layer in the Navier–Stokes solution of a shear flow
,”
J. Nonlinear Sci.
28
,
833
845
(
2018
).
54.
J.
Xie
,
M. K.
Borg
,
L.
Gibelli
,
O.
Henrich
,
D. A.
Lockerby
, and
J. M.
Reese
, “
Effective mean free path and viscosity of confined gases
,”
Phys. Fluids
31
,
072002
(
2019
).
55.
R. B.
Bird
,
W. E.
Stewart
,
E. N.
Lightfoot
, and
R. E.
Meredith
, “
Transport phenomena
,”
J. Electrochem. Soc.
108
,
78C
(
1961
).
56.
J. C.
Maxwell
, “
Vii. On stresses in rarified gases arising from inequalities of temperature
,”
Philos. Trans. R. Soc. London
170
,
231
256
(
1879
).
57.
C.
Cercignani
,
M.
Lampis
, and
S.
Lorenzani
, “
Variational approach to gas flows in microchannels
,”
Phys. Fluids
16
,
3426
3437
(
2004
).
58.
J.-W.
Dong
and
C.-Y.
Huang
, “
A simplified quasi-2d model for gas flow in microchannels and microtubes
,”
J. Micromech. Microeng.
30
,
105004
(
2020
).
59.
P.
Bahukudumbi
, “
A unified engineering model for steady and quasi-steady shear-driven gas microflows
,”
Microscale Thermophys. Eng.
7
,
291
315
(
2003
).
60.
F.
Sharipov
,
Rarefied Gas Dynamics: Fundamentals for Research and Practice
(
John Wiley & Sons
,
2015
).
61.
Y.
Sone
,
S.
Takata
, and
T.
Ohwada
, “
Numerical analysis of the plane couette flow of a rarefied gas on the basis of the linearized Boltzmann equation for hard-sphere molecules
,”
Eur. J. Mech. B/Fluids
9
,
273
288
(
1990
).
62.
M.
Knudsen
,
The Kinetic Theory of Gases: Some Modern Aspects
,
3rd ed.
(
London Methuen & Co. Ltd.
,
1950
).
63.
R.
Feres
and
G.
Yablonsky
, “
Knudsen's cosine law and random billiards
,”
Chem. Eng. Sci.
59
,
1541
1556
(
2004
).
You do not currently have access to this content.