We derived equations and closed-form solutions of transit time for a viscous droplet squeezing through a small circular pore with a finite length at microscale under constant pressures. Our analyses were motivated by the vital processes of biological cells squeezing through small pores in blood vessels and sinusoids and droplets squeezing through pores in microfluidics. First, we derived ordinary differential equations (ODEs) of a droplet squeezing through a circular pore by combining Sampson flow, Poiseuille flow, and Young–Laplace equations and took into account the lubrication layer between the droplet and the pore wall. Second, for droplets wetting the wall with small surface tension, we derived the closed-form solutions of transit time. For droplets with finite surface tension, we solved the original ODEs numerically to predict the transit time. After validations against experiments and finite element simulations, we studied the effects of pressure, viscosity, pore/droplet dimensions, and surface tension on the transit time. We found that the transit time is inversely linearly proportional to pressure when the surface tension is low compared to the critical surface tension for preventing the droplet to pass and becomes nonlinear when it approaches the critical tension. Remarkably, we showed that when a fixed percentage of surface tension to critical tension is applied, the transit time is always inversely linearly proportional to pressure, and the dependence of transit time on surface tension is nonmonotonic. Our results provided a quick way of quantitative calculations of transit time for designing droplet microfluidics and understanding cells passing through constrictions.

1.
A. T. S.
Cerdeira
,
J. B. L. M.
Campos
,
J. M.
Miranda
, and
J. D. P.
Araújo
, “
Review on microbubbles and microdroplets flowing through microfluidic geometrical elements
,”
Micromachines
11
,
201
(
2020
).
2.
I.
Chakraborty
,
J.
Ricouvier
,
P.
Yazhgur
,
P.
Tabeling
, and
A. M.
Leshansky
, “
Droplet generation at Hele-Shaw microfluidic T-junction
,”
Phys. Fluids
31
,
022010
(
2019
).
3.
S. K.
Jena
,
T.
Srivastava
,
S. S.
Bahga
, and
S.
Kondaraju
, “
Effect of channel width on droplet generation inside T-junction microchannel
,”
Phys. Fluids
35
,
022107
(
2023
).
4.
M. A.
Maleki
,
M.
Soltani
,
N.
Kashaninejad
, and
N.-T.
Nguyen
, “
Effects of magnetic nanoparticles on mixing in droplet-based microfluidics
,”
Phys. Fluids
31
,
032001
(
2019
).
5.
A.
Sattari
,
N.
Tasnim
,
P.
Hanafizadeh
, and
M.
Hoorfar
, “
Motion and deformation of migrating compound droplets in shear-thinning fluids in a microcapillary tube
,”
Phys. Fluids
33
,
053106
(
2021
).
6.
A.
Singla
and
B.
Ray
, “
Effects of surface topography on low Reynolds number droplet/bubble flow through a constricted passage
,”
Phys. Fluids
33
,
011301
(
2021
).
7.
C.
Yang
,
R.
Qiao
,
K.
Mu
,
Z.
Zhu
,
R. X.
Xu
, and
T.
Si
, “
Manipulation of jet breakup length and droplet size in axisymmetric flow focusing upon actuation
,”
Phys. Fluids
31
,
091702
(
2019
).
8.
L.
Zanini
and
C.
Sada
, “
Droplet-induced optical effects in an opto-microfluidic cross-configuration system
,”
Phys. Fluids
35
,
032007
(
2023
).
9.
I. V.
Pivkin
,
Z.
Peng
,
G. E.
Karniadakis
,
P. A.
Buffet
,
M.
Dao
, and
S.
Suresh
, “
Biomechanics of red blood cells in human spleen and consequences for physiology and disease
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
7804
(
2016
).
10.
J.
Picot
,
P. A.
Ndour
,
S. D.
Lefevre
,
W.
El Nemer
,
H.
Tawfik
,
J.
Galimand
,
L.
Da Costa
,
J.-A.
Ribeil
,
M.
de Montalembert
,
V.
Brousse
,
B.
Le Pioufle
,
P.
Buffet
,
C.
Le Van Kim
, and
O.
Français
, “
A biomimetic microfluidic chip to study the circulation and mechanical retention of red blood cells in the spleen
,”
Am. J. Hematol.
90
,
339
(
2015
).
11.
Y.-T.
Yeh
,
R.
Serrano
,
J.
François
,
J.-J.
Chiu
,
Y.-S. J.
Li
,
J. C.
del Álamo
,
S.
Chien
, and
J. C.
Lasheras
, “
Three-dimensional forces exerted by leukocytes and vascular endothelial cells dynamically facilitate diapedesis
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
133
(
2018
).
12.
C. R.
Pfeifer
,
J.
Irianto
,
R. R.
Bennett
,
Y.
Xia
,
I. L.
Ivanovska
,
A. J.
Liu
,
R. A.
Greenberg
, and
D. E.
Discher
, “
Nuclear constriction segregates mobile nuclear proteins away from chromatin
,”
Biophys. J.
112
,
337a
(
2017
).
13.
C. R.
Pfeifer
,
J.
Irianto
, and
D. E.
Discher
,
Nuclear Mechanics and Cancer Cell Migration
(
Springer International Publishing
,
2019
).
14.
A. J.
Lomakin
,
C. J.
Cattin
,
D.
Cuvelier
,
Z.
Alraies
,
M.
Molina
,
G. P. F.
Nader
,
N.
Srivastava
,
P. J.
Sáez
,
J. M.
Garcia-Arcos
,
I. Y.
Zhitnyak
,
A.
Bhargava
,
M. K.
Driscoll
,
E. S.
Welf
,
R.
Fiolka
,
R. J.
Petrie
,
N. S.
De Silva
,
J. M.
González-Granado
,
N.
Manel
,
A. M.
Lennon-Duménil
,
D. J.
Müller
, and
M.
Piel
, “
The nucleus acts as a ruler tailoring cell responses to spatial constraints
,”
Science
370
,
eaba2894
(
2020
).
15.
T.
Fujita
, “
A scanning electron microscope study of the human spleen
,”
Arch. Histol. Jpn.
37
,
187
(
1974
).
16.
Š.
Polák
,
P.
Gálfiová
, and
I.
Varga
, “
Ultrastructure of human spleen in transmission and scanning electron microscope
,”
Biologia
64
,
402
(
2009
).
17.
J. K.
Chamberlain
,
L.
Weiss
, and
R. I.
Weed
, “
Bone marrow sinus cell packing: A determinant of cell release
,”
Blood
46
,
91
(
1975
).
18.
L. G.
Rigat-Brugarolas
,
A.
Elizalde-Torrent
,
M.
Bernabeu
,
M.
De Niz
,
L.
Martin-Jaular
,
C.
Fernandez-Becerra
,
A.
Homs-Corbera
,
J.
Samitier
, and
H. A.
del Portillo
, “
A functional microengineered model of the human splenon-on-a-chip
,”
Lab Chip
14
,
1715
(
2014
).
19.
P.
Gambhire
,
S.
Atwell
,
C.
Iss
,
F.
Bedu
,
I.
Ozerov
,
C.
Badens
,
E.
Helfer
,
A.
Viallat
, and
A.
Charrier
, “
High aspect ratio sub-micrometer channels using wet etching: Application to the dynamics of red blood cell transiting through biomimetic splenic slits
,”
Small
13
,
1700967
(
2017
).
20.
A.
Moreau
,
F.
Yaya
,
H. L.
Lu
,
A.
Surendranath
,
A.
Charrier
,
B.
Dehapiot
,
E.
Helfer
,
A.
Viallat
, and
Z.
Peng
, “
Physical mechanisms of red blood cell splenic filtration
,”
Proc. Natl. Acad. Sci. U. S. A.
; bioRxiv (preprint).
21.
J.
Duez
,
J. P.
Holleran
,
P. A.
Ndour
,
C.
Pionneau
,
S.
Diakité
,
C.
Roussel
,
M.
Dussiot
,
P.
Amireault
,
V. M.
Avery
, and
P. A.
Buffet
, “
Mechanical clearance of red blood cells by the human spleen: Potential therapeutic applications of a biomimetic RBC filtration method
,”
Transfus. Clin. Biol.
22
,
151
(
2015
).
22.
S.
Ma
,
J. M.
Sherwood
,
W. T. S.
Huck
, and
S.
Balabani
, “
On the flow topology inside droplets moving in rectangular microchannels
,”
Lab Chip
14
,
3611
(
2014
).
23.
Y.
Wang
,
M.
Do-Quang
, and
G.
Amberg
, “
Viscoelastic droplet dynamics in a Y-shaped capillary channel
,”
Phys. Fluids
28
,
033103
(
2016
).
24.
M. I.
Gregersen
,
C. A.
Bryant
,
W. E.
Hammerle
,
S.
Usami
, and
S.
Chien
, “
Flow characteristics of human erythrocytes through polycarbonate sieves
,”
Science
157
,
825
(
1967
).
25.
X.
Ren
,
P.
Ghassemi
,
J. S.
Strobl
, and
M.
Agah
, “
Biophysical phenotyping of cells via impedance spectroscopy in parallel cyclic deformability channels
,”
Biomicrofluidics
13
,
044103
(
2019
).
26.
Z. S.
Khan
,
N.
Kamyabi
,
F.
Hussain
, and
S. A.
Vanapalli
, “
Passage times and friction due to flow of confined cancer cells, drops, and deformable particles in a microfluidic channel
,”
Convergent Sci. Phys. Oncol.
3
,
024001
(
2017
).
27.
Z.
Zhang
,
J.
Xu
, and
C.
Drapaca
, “
Particle squeezing in narrow confinements
,”
Microfluid. Nanofluid.
22
,
120
(
2018
).
28.
Z.
Zhang
,
C.
Drapaca
,
X.
Chen
, and
J.
Xu
, “
Droplet squeezing through a narrow constriction: Minimum impulse and critical velocity
,”
Phys. Fluids
29
,
072102
(
2017
).
29.
Z.
Zhang
,
C.
Drapaca
,
D.
Gritsenko
, and
J.
Xu
, “
Pressure of a viscous droplet squeezing through a short circular constriction: An analytical model
,”
Phys. Fluids
30
,
102004
(
2018
).
30.
M. J.
Jensen
,
G.
Goranovi
, and
H.
Bruus
, “
The clogging pressure of bubbles in hydrophilic microchannel contractions
,”
J. Micromech. Microeng.
14
,
876
(
2004
).
31.
A.
Marmur
, “
Penetration of a small drop into a capillary
,”
J. Colloid Interface Sci.
122
,
209
(
1988
).
32.
G.
Gompper
and
D. M.
Kroll
, “
Driven transport of fluid vesicles through narrow pores
,”
Phys. Rev. E
52
,
4198
(
1995
).
33.
R. E.
Waugh
and
M.
Sassi
, “
An in vitro model of erythroid egress in bone marrow
,”
Blood
68
,
250
(
1986
).
34.
F. P.
Bretherton
, “
The motion of long bubbles in tubes
,”
J. Fluid Mech.
10
,
166
(
1961
).
35.
R.
Bruinsma
, “
Rheology and shape transitions of vesicles under capillary flow
,”
Physica A
234
,
249
(
1996
).
36.
T. W.
Secomb
,
R.
Skalak
,
N.
Özkaya
, and
J. F.
Gross
, “
Flow of axisymmetric red blood cells in narrow capillaries
,”
J. Fluid Mech.
163
,
405
(
1986
).
37.
D.
Barthes-Biesel
,
Microhydrodynamics and Complex Fluids
(
CRC Press
,
2012
).
38.
Z.
Zhang
,
J.
Xu
,
B.
Hong
, and
X.
Chen
, “
The effects of 3D channel geometry on CTC passing pressure—Towards deformability-based cancer cell separation
,”
Lab Chip
14
,
2576
(
2014
).
39.
A. Z.
Zinchenko
and
R. H.
Davis
, “
A boundary-integral study of a drop squeezing through interparticle constrictions
,”
J. Fluid Mech.
564
,
227
(
2006
).
40.
G.
Sampson
, “
XII. On Stokes's current function
,”
Philos. Trans. R. Soc., A
182
,
449
(
1891
).
41.
Z.
Dagan
,
S.
Weinbaum
, and
R.
Pfeffer
, “
An infinite-series solution for the creeping motion through an orifice of finite length
,”
J. Fluid Mech.
115
,
505
(
1982
).
42.
K.
Piroird
,
C.
Clanet
, and
D.
Quéré
, “
Capillary extraction
,”
Langmuir
27
,
9396
(
2011
).
43.
COMSOL AB
,
COMSOL Multiphysics® ver. 6.1
(
COMSOL AB
,
Stockholm, Sweden
,
2022
).
44.
H.
Lu
and
Z.
Peng
, “
Boundary integral simulations of a red blood cell squeezing through a submicron slit under prescribed inlet and outlet pressures
,”
Phys. Fluids
31
,
031902
(
2019
).
45.
Z.
Peng
,
O. S.
Pak
,
Z.
Feng
,
A. P.
Liu
, and
Y.-N.
Young
, “
On the gating of mechanosensitive channels by fluid shear stress
,”
Acta Mech. Sin.
32
,
1012
(
2016
).
46.
W. L.
Olbricht
, “
Pore-scale prototypes of multiphase flow in porous media
,”
Annu. Rev. Fluid Mech.
28
,
187
(
1996
).
47.
W. L.
Olbricht
and
D. M.
Kung
, “
The deformation and breakup of liquid drops in low Reynolds number flow through a capillary
,”
Phys. Fluids A
4
,
1347
(
1992
).
48.
R.
Waugh
and
E. A.
Evans
, “
Thermoelasticity of red blood cell membrane
,”
Biophys. J.
26
,
115
(
1979
).
You do not currently have access to this content.