The increasingly demonstrated association of wall enhancement (WE) measured by vascular wall imaging with the instability/rupture of intracranial aneurysms (IAs) implies the significance of investigating the transport and accumulation of blood substances [e.g., low-density lipoprotein (LDL), lipoprotein (a)] related to WE in IAs. In the present study, we perform numerical simulations to explore the relationships between the distribution/severity of LDL deposition on the lumen surface and the morphological characteristics of aneurysm and its adjacent arteries as well as the underlying fluid dynamic mechanisms. Bifurcation aneurysms located at the middle cerebral artery are selected as the subject of investigation and for which both idealized and patient-specific models are built. Studies on the idealized models reveal that the aneurysm–parent (AP) artery angle is more powerful than other morphological parameters [e.g., daughter–parent (DP) artery angle, nonsphericity index (NI) of aneurysm] in determining the severity of LDL deposition. A bleb (i.e., secondary sac) can enhance local LDL deposition, especially when located in an LDL deposition-prone aneurysm wall region. In patient-specific models, the dominant effect on the LDL deposition of the AP angle remains identifiable, whereas the effects of the DP angle and NI are overwhelmed by confounding factors. Enhanced LDL deposition prefers to appear in wall regions perpendicular to the intra-aneurysmal vortex centerline. In comparison with wall shear stress magnitude, the normal-to-tangential near-wall velocity ratio and particle residence time can better predict the localization of enhanced LDL deposition.

1.
R. M.
Starke
,
N.
Chalouhi
,
M. S.
Ali
,
P. M.
Jabbour
,
S. I.
Tjoumakaris
,
L. F.
Gonzalez
,
R. H.
Rosenwasser
,
W. J.
Koch
, and
A. S.
Dumont
, “
The role of oxidative stress in cerebral aneurysm formation and rupture
,”
Curr. Neurovasc. Res.
10
,
247
255
(
2013
).
2.
J. L.
Brisman
,
J. K.
Song
, and
D. W.
Newell
, “
Cerebral aneurysms
,”
N. Engl. J. Med.
355
,
928
939
(
2006
).
3.
A.
Morita
,
T.
Kirino
,
K.
Hashi
,
N.
Aoki
,
S.
Fukuhara
,
N.
Hashimoto
,
T.
Nakayama
,
M.
Sakai
,
A.
Teramoto
,
S.
Tominari
, and
T.
Yoshimoto
, “
The natural course of unruptured cerebral aneurysms in a Japanese cohort
,”
N. Engl. J. Med.
366
,
2474
2482
(
2012
).
4.
T.
Fukushima
and
T.
Azuma
, “
The horseshoe vortex: A secondary flow generated in arteries with stenosis, bifurcation, and branchings
,”
Biorheology
19
,
143
154
(
1982
).
5.
M. S.
Nagargoje
,
D. K.
Mishra
, and
R.
Gupta
, “
Pulsatile flow dynamics in symmetric and asymmetric bifurcating vessels
,”
Phys. Fluids
33
,
071904
(
2021
).
6.
F. J.
Detmer
,
B. J.
Chung
,
C.
Jimenez
,
F.
Hamzei-Sichani
,
D.
Kallmes
,
C.
Putman
, and
J. R.
Cebral
, “
Associations of hemodynamics, morphology, and patient characteristics with aneurysm rupture stratified by aneurysm location
,”
Neuroradiology
61
,
275
284
(
2019
).
7.
P. S.
Amenta
,
S.
Yadla
,
P. G.
Campbell
,
M. G.
Maltenfort
,
S.
Dey
,
S.
Ghosh
,
M. S.
Ali
,
J. I.
Jallo
,
S. I.
Tjoumakaris
,
L. F.
Gonzalez
,
A. S.
Dumont
,
R. H.
Rosenwasser
, and
P. M.
Jabbour
, “
Analysis of nonmodifiable risk factors for intracranial aneurysm rupture in a large, retrospective cohort
,”
Neurosurgery
70
,
693
701
(
2012
).
8.
J. A.
Cowan
,
J.
Ziewacz
,
J. B.
Dimick
,
G. R.
Upchurch
, Jr.
, and
B. G.
Thompson
, “
Use of endovascular coil embolization and surgical clip occlusion for cerebral artery aneurysms
,”
J. Neurosurg.
107
,
530
535
(
2007
).
9.
J. Y.
Ahn
,
I. B.
Han
,
T. G.
Kim
,
P. H.
Yoon
,
Y. J.
Lee
,
B. H.
Lee
,
S. H.
Seo
,
D. I.
Kim
,
C. K.
Hong
, and
J. Y.
Joo
, “
Endovascular treatment of intracranial vertebral artery dissections with stent placement or stent-assisted coiling
,”
AJNR. Am. J. Neuroradiol.
27
,
1514
1520
(
2006
).
10.
G.
Zhou
,
M.
Su
,
Y.-L.
Yin
, and
M.-H.
Li
, “
Complications associated with the use of flow-diverting devices for cerebral aneurysms: A systematic review and meta-analysis
,”
Neurosurg. Focus
42
,
E17
(
2017
).
11.
E.
Orrù
,
L.
Roccatagliata
,
G.
Cester
,
F.
Causin
, and
L.
Castellan
, “
Complications of endovascular treatment of cerebral aneurysms
,”
Eur. J. Radiol.
82
,
1653
1658
(
2013
).
12.
M.
Zanaty
,
N.
Chalouhi
,
S. I.
Tjoumakaris
,
L.
Fernando Gonzalez
,
R. H.
Rosenwasser
, and
P. M.
Jabbour
, “
Aneurysm geometry in predicting the risk of rupture. A review of the literature
,”
Neurol. Res.
36
,
308
313
(
2014
).
13.
D.
Backes
,
M. D. J.
Vergouwen
,
B. K.
Velthuis
,
I. C.
Van Der Schaaf
,
A. S. E.
Bor
,
A.
Algra
, and
G. J. E.
Rinkel
, “
Difference in aneurysm characteristics between ruptured and unruptured aneurysms in patients with multiple intracranial aneurysms
,”
Stroke
45
,
1299
1303
(
2014
).
14.
L.
Liang
,
D. A.
Steinman
,
O.
Brina
,
C.
Chnafa
,
N. M.
Cancelliere
, and
V. M.
Pereira
, “
Towards the clinical utility of CFD for assessment of intracranial aneurysm rupture-a systematic review and novel parameter-ranking tool
,”
J. NeuroInterventional Surg.
11
,
153
158
(
2019
).
15.
S. F.
Salimi Ashkezari
,
F.
Mut
,
B. J.
Chung
,
A. K.
Yu
,
C. J.
Stapleton
,
A. P.
See
,
S.
Amin-Hanjani
,
F. T.
Charbel
,
B.
Rezai Jahromi
,
M.
Niemelä
,
J.
Frösen
,
S.
Maiti
,
A. M.
Robertson
, and
J. R.
Cebral
, “
Hemodynamics in aneurysm blebs with different wall characteristics
,”
J. NeuroInterventional Surg.
13
,
642
(
2021
).
16.
J. R.
Cebral
,
M.
Vazquez
,
D. M.
Sforza
,
G.
Houzeaux
,
S.
Tateshima
,
E.
Scrivano
,
C.
Bleise
,
P.
Lylyk
, and
C. M.
Putman
, “
Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture
,”
J. NeuroInterventional Surg.
7
,
530
(
2015
).
17.
J.
Suzuki
and
H.
Ohara
, “
Clinicopathological study of cerebral aneurysms: Origin, rupture, repair, and growth
,”
J. Neurosurg.
48
,
505
514
(
1978
).
18.
M.
Edjlali
,
J.-C.
Gentric
,
C.
Régent-Rodriguez
,
D.
Trystram
,
W. B.
Hassen
,
S.
Lion
,
F.
Nataf
,
J.
Raymond
,
O.
Wieben
,
P.
Turski
,
J.-F.
Meder
,
C.
Oppenheim
, and
O.
Naggara
, “
Does aneurysmal wall enhancement on vessel wall MRI help to distinguish stable from unstable intracranial aneurysms?
,”
Stroke
45
,
3704
3706
(
2014
).
19.
P.
Hu
,
Q.
Yang
,
D.-D.
Wang
,
S.-C.
Guan
, and
H.-Q.
Zhang
, “
Wall enhancement on high-resolution magnetic resonance imaging may predict an unsteady state of an intracranial saccular aneurysm
,”
Neuroradiology
58
,
979
985
(
2016
).
20.
G.-X.
Wang
,
W.
Li
,
S.
Lei
,
X.-D.
Ge
,
J.-B.
Yin
, and
D.
Zhang
, “
Relationships between aneurysmal wall enhancement and conventional risk factors in patients with intracranial aneurysm: A high-resolution MRI study
,”
J. Neuroradiol.
46
,
25
28
(
2019
).
21.
X.
Wang
,
C.
Zhu
,
Y.
Leng
,
A. J.
Degnan
, and
J.
Lu
, “
Intracranial aneurysm wall enhancement associated with aneurysm rupture: A systematic review and meta-analysis
,”
Acad. Radiol.
26
,
664
673
(
2019
).
22.
R.
Molenberg
,
M. W.
Aalbers
,
A. P. A.
Appelman
,
M.
Uyttenboogaart
, and
J. M. C.
van Dijk
, “
Intracranial aneurysm wall enhancement as an indicator of instability: A systematic review and meta-analysis
,”
Eur. J. Neurol.
28
,
3837
3848
(
2021
).
23.
M.
Zhang
,
F.
Peng
,
X.
Tong
,
X.
Feng
,
Y.
Li
,
H.
Chen
,
H.
Niu
,
B.
Zhang
,
G.
Song
,
Y.
Li
,
P.
Liu
,
A.
Liu
, and
R.
Li
, “
Associations between haemodynamics and wall enhancement of intracranial aneurysm
,”
Stroke Vasc. Neurol.
6
,
467
475
(
2021
).
24.
D.
Ishii
,
M.
Zanaty
,
J. A.
Roa
,
L.
Li
,
Y.
Lu
,
R.
Sabotin
,
L.
Allan
,
E. A.
Samaniego
, and
D. M.
Hasan
, “
Concentration of Lp(a) (lipoprotein[a]) in aneurysm sac is associated with wall enhancement of unruptured intracranial aneurysm
,”
Stroke
52
,
1465
1468
(
2021
).
[PubMed]
25.
T.
Matsushige
,
K.
Shimonaga
,
D.
Ishii
,
S.
Sakamoto
,
M.
Hosogai
,
Y.
Hashimoto
,
M.
Kaneko
,
C.
Ono
,
T.
Mizoue
, and
K.
Kurisu
, “
Vessel wall imaging of evolving unruptured intracranial aneurysms
,”
Stroke
50
,
1891
1894
(
2019
).
26.
Y.
Hashimoto
,
T.
Matsushige
,
K.
Shimonaga
,
M.
Hosogai
,
M.
Kaneko
,
C.
Ono
, and
T.
Mizoue
, “
Vessel wall imaging predicts the presence of atherosclerotic lesions in unruptured intracranial aneurysms
,”
World Neurosurg.
132
,
e775
e782
(
2019
).
27.
A. J.
Lusis
, “
Atherosclerosis
,”
Nature
407
,
233
241
(
2000
).
28.
V.
Peiffer
,
S. J.
Sherwin
, and
P. D.
Weinberg
, “
Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review
,”
Cardiovasc. Res.
99
,
242
(
2013
).
29.
U.
Olgac
,
V.
Kurtcuoglu
, and
D.
Poulikakos
, “
Computational modeling of coupled blood-wall mass transport of LDL: Effects of local wall shear stress
,”
Am. J. Physiol.
294
,
H909
H919
(
2008
).
30.
D. N.
Ku
,
D. P.
Giddens
,
C. K.
Zarins
, and
S.
Glagov
, “
Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress
,”
Arteriosclerosis
5
,
293
302
(
1985
).
31.
M. A.
Abazari
,
D.
Rafieianzab
,
M.
Soltani
, and
M.
Alimohammadi
, “
The effect of beta-blockers on hemodynamic parameters in patient-specific blood flow simulations of type-B aortic dissection: A virtual study
,”
Sci. Rep.
11
,
16058
(
2021
).
32.
D.
Rafieianzab
,
M. A.
Abazari
,
M.
Soltani
, and
M.
Alimohammadi
, “
The effect of coarctation degrees on wall shear stress indices
,”
Sci. Rep.
11
,
12757
(
2021
).
33.
M.
Zhou
,
Y.
Yu
,
R.
Chen
,
X.
Liu
,
Y.
Hu
,
Z.
Ma
,
L.
Gao
,
W.
Jian
, and
L.
Wang
, “
Wall shear stress and its role in atherosclerosis
,”
Front. Cardiovasc. Med.
10
,
1083547
(
2023
).
34.
S.
Choudhury
,
K.
Anupindi
, and
B. S. V.
Patnaik
, “
Influence of wall shear stress and geometry on the lumen surface concentration of low density lipoprotein in a model abdominal aortic aneurysm
,”
Phys. Fluids
31
,
011901
(
2019
).
35.
M. I.
Baharoglu
,
A.
Lauric
,
B.-L.
Gao
, and
A. M.
Malek
, “
Identification of a dichotomy in morphological predictors of rupture status between sidewall- and bifurcation-type intracranial aneurysms: Clinical article
,”
J. Neurosurg.
116
,
871
881
(
2012
).
36.
A.
Farnoush
,
A.
Avolio
, and
Y.
Qian
, “
Effect of bifurcation angle configuration and ratio of daughter diameters on hemodynamics of bifurcation aneurysms
,”
Am. J. Neuroradiol.
34
,
391
396
(
2013
).
37.
T.
Sasaki
,
Y.
Kakizawa
,
M.
Yoshino
,
Y.
Fujii
,
I.
Yoroi
,
Y.
Ichikawa
,
T.
Horiuchi
, and
K.
Hongo
, “
Numerical analysis of bifurcation angles and branch patterns in intracranial aneurysm formation
,”
Neurosurgery
85
,
E31
E39
(
2019
).
38.
L.
Parlea
,
R.
Fahrig
,
D. W.
Holdsworth
, and
S. P.
Lownie
, “
An analysis of the geometry of saccular intracranial aneurysms
,”
AJNR. Am. J. Neuroradiol.
20
,
1079
1089
(
1999
).
39.
S.
Sakamoto
,
S.
Ohba
,
M.
Shibukawa
,
Y.
Kiura
,
T.
Okazaki
,
K.
Arita
, and
K.
Kurisu
, “
Characteristics of aneurysms of the internal carotid artery bifurcation
,”
Acta Neurochir.
148
,
139
143
(
2006
).
40.
A. S. E.
Bor
,
B. K.
Velthuis
,
C. B.
Majoie
, and
G. J. E.
Rinkel
, “
Configuration of intracranial arteries and development of aneurysms
,”
Neurology
70
,
700
(
2008
).
41.
B.-L.
Gao
,
H.
Hao
,
W.
Hao
,
C.-F.
Ren
,
L.
Yang
, and
Y.
Han
, “
Cerebral aneurysms at major arterial bifurcations are associated with the arterial branch forming a smaller angle with the parent artery
,”
Sci. Rep.
12
,
5106
(
2022
).
42.
J. P.
Greving
,
M. J. H.
Wermer
,
R. D.
Brown
,
A.
Morita
,
S.
Juvela
,
M.
Yonekura
,
T.
Ishibashi
,
J. C.
Torner
,
T.
Nakayama
,
G. J. E.
Rinkel
, and
A.
Algra
, “
Development of the phases score for prediction of risk of rupture of intracranial aneurysms: A pooled analysis of six prospective cohort studies
,”
Lancet Neurol.
13
,
59
66
(
2014
).
43.
N.
Etminan
,
R. D.
Brown
,
K.
Beseoglu
,
S.
Juvela
,
J.
Raymond
,
A.
Morita
,
J. C.
Torner
,
C. P.
Derdeyn
,
A.
Raabe
,
J.
Mocco
,
M.
Korja
,
A.
Abdulazim
,
S.
Amin-Hanjani
,
R.
Al-Shahi Salman
,
D. L.
Barrow
,
J.
Bederson
,
A.
Bonafe
,
A. S.
Dumont
,
D. J.
Fiorella
,
A.
Gruber
,
G. J.
Hankey
,
D. M.
Hasan
,
B. L.
Hoh
,
P.
Jabbour
,
H.
Kasuya
,
M. E.
Kelly
,
P. J.
Kirkpatrick
,
N.
Knuckey
,
T.
Koivisto
,
T.
Krings
,
M. T.
Lawton
,
T. R.
Marotta
,
S. A.
Mayer
,
E.
Mee
,
V. M.
Pereira
,
A.
Molyneux
,
M. K.
Morgan
,
K.
Mori
,
Y.
Murayama
,
S.
Nagahiro
,
N.
Nakayama
,
M.
Niemelä
,
C. S.
Ogilvy
,
L.
Pierot
,
A. A.
Rabinstein
,
Y. B.
Roos
,
J.
Rinne
,
R. H.
Rosenwasser
,
A.
Ronkainen
,
K.
Schaller
,
V.
Seifert
,
R. A.
Solomon
,
J.
Spears
,
H.-J.
Steiger
,
M. D.
Vergouwen
,
I.
Wanke
,
M. J.
Wermer
,
G. K.
Wong
,
J. H.
Wong
,
G. J.
Zipfel
,
E. S.
Connolly
,
H.
Steinmetz
,
G.
Lanzino
,
A.
Pasqualin
,
D.
Rüfenacht
,
P.
Vajkoczy
,
C.
Mcdougall
,
D.
Hänggi
,
P.
Leroux
,
G. J.
Rinkel
, and
R. L.
Macdonald
, “
The unruptured intracranial aneurysm treatment score
,”
Neurology
85
,
881
889
(
2015
).
44.
M. D.
Ford
,
S.-W.
Lee
,
S. P.
Lownie
,
D. W.
Holdsworth
, and
D. A.
Steinman
, “
On the effect of parent–aneurysm angle on flow patterns in basilar tip aneurysms: Towards a surrogate geometric marker of intra-aneurismal hemodynamics
,”
J. Biomech.
41
,
241
248
(
2008
).
45.
M. S.
Nagargoje
,
C.
Valeti
,
N.
Manjunath
,
B.
Akhade
,
B. J.
Sudhir
,
B. S. V.
Patnaik
, and
S. K.
Kannath
, “
Influence of morphological parameters on hemodynamics in internal carotid artery bifurcation aneurysms
,”
Phys. Fluids
34
,
101901
(
2022
).
46.
A.
Asadbeygi
,
S.
Lee
,
J.
Kovalchin
, and
H.
Hatoum
, “
Predicting hemodynamic indices in coronary artery aneurysms using response surface method: An application in Kawasaki disease
,”
Comput. Methods Programs Biomed.
224
,
107007
(
2022
).
47.
A.
Asadbeygi
,
S.
Lee
,
J.
Kovalchin
, and
H.
Hatoum
, “
Effect of beta blockers on the hemodynamics and thrombotic risk of coronary artery aneurysms in Kawasaki disease
,”
J. Cardiovasc. Transl. Res.
(published online 2023).
48.
S.
Kumar
,
B. V. R.
Kumar
, and
S. K.
Rai
, “
Influence of abdominal aortic aneurysm shape on hemodynamics in human aortofemoral arteries: A transient open-loop study
,”
Phys. Fluids
35
,
041903
(
2023
).
49.
M. L.
Raghavan
,
B.
Ma
, and
R. E.
Harbaugh
, “
Quantified aneurysm shape and rupture risk
,”
J. Neurosurg.
102
,
355
362
(
2005
).
50.
J. G.
Myers
,
J. A.
Moore
,
M.
Ojha
,
K. W.
Johnston
, and
C. R.
Ethier
, “
Factors influencing blood flow patterns in the human right coronary artery
,”
Ann. Biomed. Eng.
29
,
109
120
(
2001
).
51.
G.
De Nisco
,
P.
Zhang
,
K.
Calò
,
X.
Liu
,
R.
Ponzini
,
C.
Bignardi
,
G.
Rizzo
,
X.
Deng
,
D.
Gallo
, and
U.
Morbiducci
, “
What is needed to make low-density lipoprotein transport in human aorta computational models suitable to explore links to atherosclerosis? impact of initial and inflow boundary conditions
,”
J. Biomech.
68
,
33
42
(
2018
).
52.
H.
Yi
,
Z.
Yang
,
M.
Johnson
,
L.
Bramlage
, and
B.
Ludwig
, “
Hemodynamic characteristics in a cerebral aneurysm model using non-Newtonian blood analogues
,”
Phys. Fluids
34
,
103101
(
2022
).
53.
B. M.
Johnston
,
P. R.
Johnston
,
S.
Corney
, and
D.
Kilpatrick
, “
Non-Newtonian blood flow in human right coronary arteries: Steady state simulations
,”
J. Biomech.
37
,
709
720
(
2004
).
54.
S.
Wada
and
T.
Karino
, “
Theoretical prediction of low-density lipoproteins concentration at the luminal surface of an artery with a multiple bend
,”
Ann. Biomed. Eng.
30
,
778
791
(
2002
).
55.
F.
Liang
,
K.
Fukasaku
,
H.
Liu
, and
S.
Takagi
, “
A computational model study of the influence of the anatomy of the circle of Willis on cerebral hyperperfusion following carotid artery surgery
,”
BioMed. Eng. OnLine
10
,
84
(
2011
).
56.
A.
Marzo
,
P.
Singh
,
I.
Larrabide
,
A.
Radaelli
,
S.
Coley
,
M.
Gwilliam
,
I. D.
Wilkinson
,
P.
Lawford
,
P.
Reymond
,
U.
Patel
,
A.
Frangi
, and
D. R.
Hose
, “
Computational hemodynamics in cerebral aneurysms: The effects of modeled versus measured boundary conditions
,”
Ann. Biomed. Eng.
39
,
884
896
(
2011
).
57.
H.
Yu
,
G. P.
Huang
,
B. R.
Ludwig
, and
Z.
Yang
, “
An in-vitro flow study using an artificial circle of willis model for validation of an existing one-dimensional numerical model
,”
Ann. Biomed. Eng.
47
,
1023
1015
(
2019
).
58.
C.
Chnafa
,
O.
Brina
,
V.
Pereira
, and
D.
Steinman
, “
Better than nothing: A rational approach for minimizing the impact of outflow strategy on cerebrovascular simulations
,”
Am. J. Neuroradiol.
39
,
337
343
(
2018
).
59.
S.
Saalfeld
,
S.
Voß
,
O.
Beuing
,
B.
Preim
, and
P.
Berg
, “
Flow-splitting-based computation of outlet boundary conditions for improved cerebrovascular simulation in multiple intracranial aneurysms
,”
Int. J. Comput. Assisted Radiol. Surg.
14
,
1805
1813
(
2019
).
60.
D. A.
Steinman
and
V. M.
Pereira
, “
How patient specific are patient-specific computational models of cerebral aneurysms? An overview of sources of error and variability
,”
Neurosurg. Focus
47
,
E14
(
2019
).
61.
J.
Coresh
,
P. O.
Kwiterovich
, Jr.
,
H. H.
Smith
, and
P. S.
Bachorik
, “
Association of plasma triglyceride concentration and LDL particle diameter, density, and chemical composition with premature coronary artery disease in men and women
,”
J. Lipid Res.
34
,
1687
1697
(
1993
).
62.
W.
Kraipech
,
A.
Nowakowski
,
T.
Dyakowski
, and
A.
Suksangpanomrung
, “
An investigation of the effect of the particle–fluid and particle–particle interactions on the flow within a hydrocyclone
,”
Chem. Eng. J.
111
,
189
197
(
2005
).
63.
J.
Alastruey
,
K. H.
Parker
,
J.
Peiro
,
S. M.
Byrd
, and
S. J.
Sherwin
, “
Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows
,”
J. Biomech.
40
,
1794
1805
(
2007
).
64.
S.
Xin
,
Y.
Chen
,
B.
Zhao
, and
F.
Liang
, “
Combination of morphological and hemodynamic parameters for assessing the rupture risk of intracranial aneurysms: A retrospective study on mirror middle cerebral artery aneurysms
,”
J. Biomech. Eng.
144
,
081006
(
2022
).
65.
A.
Arzani
,
A. M.
Gambaruto
,
G.
Chen
, and
S. C.
Shadden
, “
Lagrangian wall shear stress structures and near-wall transport in high-Schmidt-number aneurysmal flows
,”
J. Fluid Mech.
790
,
158
172
(
2016
).
66.
X.
Li
,
X.
Liu
,
X.
Li
,
L.
Xu
,
X.
Chen
, and
F.
Liang
, “
Tortuosity of the superficial femoral artery and its influence on blood flow patterns and risk of atherosclerosis
,”
Biomech. Modeling Mechanobiol.
18
,
883
896
(
2019
).
67.
J.
Hou
,
X.
Li
,
Z.
Li
,
L.
Yin
,
X.
Chen
, and
F.
Liang
, “
An in vivo data-based computational study on sitting-induced hemodynamic changes in the external iliac artery
,”
J. Biomech. Eng.
144
,
021007
(
2022
).
68.
A. M.
Gambaruto
,
D. J.
Doorly
, and
T.
Yamaguchi
, “
Wall shear stress and near-wall convective transport: Comparisons with vascular remodelling in a peripheral graft anastomosis
,”
J. Comput. Phys.
229
,
5339
5356
(
2010
).
69.
H. F.
Langer
and
M.
Gawaz
, “
Platelet-vessel wall interactions in atherosclerotic disease
,”
Thromb. Haemostasis
99
,
480
486
(
2008
).
70.
N.
Paredes
and
A. K.
Chan
, “
The role of the vessel wall
,”
Methods Mol. Biol.
992
,
31
46
(
2013
).
71.
X.
Deng
,
Y.
Marois
,
T.
How
,
Y.
Merhi
,
M.
King
,
R.
Guidoin
, and
T.
Karino
, “
Luminal surface concentration of lipoprotein (LDL) and its effect on the wall uptake of cholesterol by canine carotid arteries
,”
J. Vasc. Surg.
21
,
135
145
(
1995
).
72.
N.
Fatouraee
,
X.
Deng
,
A.
De Champlain
, and
R.
Guidoin
, “
Concentration polarization of low density lipoproteins (LDL) in the arterial system
,”
Ann. N. Y. Acad. Sci.
858
,
137
146
(
1998
).
73.
J.
Lantz
and
M.
Karlsson
, “
Large eddy simulation of LDL surface concentration in a subject specific human aorta
,”
J. Biomech.
45
,
537
542
(
2012
).
74.
A.
Arzani
and
S. C.
Shadden
, “
Wall shear stress fixed points in cardiovascular fluid mechanics
,”
J. Biomech.
73
,
145
152
(
2018
).
75.
A.
Farghadan
and
A.
Arzani
, “
The combined effect of wall shear stress topology and magnitude on cardiovascular mass transport
,”
Int. J. Heat Mass Transfer
131
,
252
260
(
2019
).
76.
M.
Mahmoudi
,
A.
Farghadan
,
D. R.
McConnell
,
A. J.
Barker
,
J. J.
Wentzel
,
M. J.
Budoff
, and
A.
Arzani
, “
The story of wall shear stress in coronary artery atherosclerosis: Biochemical transport and mechanotransduction
,”
J. Biomech. Eng.
143
,
041002
(
2021
).
77.
A.
Lauric
,
L.
Silveira
,
E.
Lesha
,
J. M.
Breton
, and
A. M.
Malek
, “
Aneurysm presence at the anterior communicating artery bifurcation is associated with caliber tapering of the A1 segment
,”
J. Neurosurg.
136
,
1694
1704
(
2022
).
78.
A. M.
Malek
,
S. L.
Alper
, and
S.
Izumo
, “
Hemodynamic shear stress and its role in atherosclerosis
,”
J. Am. Med. Assoc.
282
,
2035
2042
(
1999
).
79.
C.
Ou
,
Y.
Qian
,
X.
Zhang
,
J.
Liu
,
W.
Liu
,
H.
Su
,
N.
Zhang
,
J.
Zhang
,
X.
He
, and
C. Z.
Duan
, “
Elevated lipid infiltration is associated with cerebral aneurysm rupture
,”
Front. Neurol.
11
,
154
(
2020
).
80.
H. T.
Sun
,
K. Y.
Sze
,
K. W.
Chow
, and
A. C.
On Tsang
, “
A comparative study on computational fluid dynamic, fluid-structure interaction and static structural analyses of cerebral aneurysm
,”
Eng. Appl. Comput. Fluid Mech.
16
,
262
278
(
2022
).
81.
S.
Tupin
,
K. M.
Saqr
, and
M.
Ohta
, “
Effects of wall compliance on multiharmonic pulsatile flow in idealized cerebral aneurysm models: Comparative PIV experiments
,”
Exp. Fluids
61
,
164
(
2020
).
82.
R.
Torii
,
M.
Oshima
,
T.
Kobayashi
,
K.
Takagi
, and
T. E.
Tezduyar
, “
Influencing factors in image-based fluid-structure interaction computation of cerebral aneurysms
,”
Int. J. Numer. Methods Fluids
65
,
324
340
(
2011
).
83.
Y.
Bazilevs
,
M.-C.
Hsu
,
Y.
Zhang
,
W.
Wang
,
X.
Liang
,
T.
Kvamsdal
,
R.
Brekken
, and
J. G.
Isaksen
, “
A fully-coupled fluid-structure interaction simulation of cerebral aneurysms
,”
Comput. Mech.
46
,
3
16
(
2010
).
You do not currently have access to this content.