Dandelion seeds possess a complex three-dimensional structure and a self-adapted flying ability. To understand this fascinating flight mechanism, a three-dimensional umbrella-shaped model imitating dandelion seeds is proposed. The effects of folding angle and flow velocity on the dandelion drag force during their descent are studied, and it is found that the larger folding angle results in a smaller drag coefficient. Four different vortex structures are revealed depending on the folding angle. The effect of crosswind disturbances on the attitude stability of dandelions is also investigated by changing folding angles. It is found that dandelions with larger folding angles have better attitude stability. The proposed model suggests that when the folding angle is between 20° and 40°, the dandelion seeds might have a good balance between the drag force and attitude stability, which ensures a broad self-adapted flying ability.

1.
H. F.
Howe
and
J.
Smallwood
, “
Ecology of seed dispersal
,”
Annu. Rev. Ecol. Syst.
13
,
201
228
(
1982
).
2.
R.
Nathan
,
F. M.
Schurr
,
O.
Spiegel
,
O.
Steinitz
,
A.
Trakhtenbrot
, and
A.
Tsoar
, “
Mechanisms of long-distance seed dispersal
,”
Trends Ecol. Evol.
23
,
638
647
(
2008
).
3.
J.
Sirohi
, “
Microflyers: Inspiration from nature
,”
Bioinspiration, Biomimetics, Bioreplication
8686
,
134
148
(
2013
).
4.
B. H.
Kim
,
K.
Li
,
J.-T.
Kim
,
Y.
Park
,
H.
Jang
,
X.
Wang
,
Z.
Xie
,
S. M.
Won
,
H.-J.
Yoon
, and
G.
Lee
, “
Three-dimensional electronic microfliers inspired by wind-dispersed seeds
,”
Nature
597
,
503
510
(
2021
).
5.
E.
Barta
and
D.
Weihs
, “
Creeping flow around a finite row of slender bodies in close proximity
,”
J. Fluid Mech.
551
,
1
17
(
2006
).
6.
G.
Davidi
and
D.
Weihs
, “
Flow around a comb wing in low-Reynolds-number flow
,”
AIAA J.
50
,
249
253
(
2012
).
7.
J.
Sundin
and
S.
Bagheri
, “
Interaction between hairy surfaces and turbulence for different surface time scales
,”
J. Fluid Mech.
861
,
556
584
(
2019
).
8.
M. C.
Andersen
, “
Diaspore morphology and seed dispersal in several wind‐dispersed Asteraceae
,”
Am. J. Bot.
80
,
487
492
(
1993
).
9.
I.
Hensen
and
C.
Müller
, “
Experimental and structural investigations of anemochorous dispersal
,”
Plant Ecol.
133
,
169
180
(
1997
).
10.
M. B.
Soons
and
J. M.
Bullock
, “
Non-random seed abscission, long-distance wind dispersal and plant migration rates
,”
J. Ecol.
96
,
581
(
2008
).
11.
C.
Cummins
,
M.
Seale
,
A.
Macente
,
D.
Certini
,
E.
Mastropaolo
,
I. M.
Viola
, and
N.
Nakayama
, “
A separated vortex ring underlies the flight of the dandelion
,”
Nature
562
,
414
418
(
2018
).
12.
E.
Zussman
,
A.
Yarin
, and
D.
Weihs
, “
A micro-aerodynamic decelerator based on permeable surfaces of nanofiber mats
,”
Exp. Fluids
33
,
315
320
(
2002
).
13.
Q.
Meng
,
Q.
Wang
,
K.
Zhao
,
P.
Wang
, and
J.
Lei
, “
Hydroactuated configuration alteration of fibrous dandelion pappi: Toward self‐controllable transport behavior
,”
Adv. Funct. Mater.
26
,
7378
(
2016
).
14.
M.
Seale
,
A.
Kiss
,
S.
Bovio
,
I. M.
Viola
,
E.
Mastropaolo
,
A.
Boudaoud
, and
N.
Nakayama
, “
Dandelion pappus morphing is actuated by radially patterned material swelling
,”
Nat. Commun.
13
,
2498
(
2022
).
15.
M.
Seale
,
O.
Zhdanov
,
M. B.
Soons
,
C.
Cummins
,
E.
Kroll
,
M. R.
Blatt
,
H.
Zare-Behtash
,
A.
Busse
,
E.
Mastropaolo
, and
J. M.
Bullock
, “
Environmental morphing enables informed dispersal of the dandelion diaspore
,”
Elife
11
,
e81962
(
2022
).
16.
F.-S.
Qiu
,
T.-B.
He
, and
W.-Y.
Bao
, “
Effect of porosity on separated vortex rings of dandelion seeds
,”
Phys. Fluids
32
,
113104
(
2020
).
17.
F.-S.
Qiu
,
B.-W.
Wang
,
Y.-M.
Du
, and
H.-Y.
Qian
, “
Numerical investigation on the flow characteristics of model dandelion seeds with angles of attitude
,”
Phys. Fluids
33
,
113107
(
2021
).
18.
F.-S.
Qiu
,
H.-Y.
Qian
,
Y.-M.
Du
, and
C.-J.
Li
, “
The pappus angle as a key factor in the entire separation of a vortex ring from a dandelion seed's pappus
,”
Phys. Fluids
34
,
083101
(
2022
).
19.
Y.
Dong
,
K.
Hu
,
Y.
Wang
, and
Z.
Zhang
, “
The steady vortex and enhanced drag effects of dandelion seeds immersed in low-Reynolds-number flow
,”
AIP Adv.
11
,
085320
(
2021
).
20.
S.
Li
,
D.
Pan
,
J.
Li
, and
X.
Shao
, “
Drag and wake structure of a quasi-dandelion pappus model at low and moderate Reynolds numbers: The effects of filament width
,”
Phys. Fluids
33
,
121904
(
2021
).
21.
V.
Casseau
,
G.
De Croon
,
D.
Izzo
, and
C.
Pandolfi
, “
Morphologic and aerodynamic considerations regarding the plumed seeds of Tragopogon pratensis and their implications for seed dispersal
,”
PLoS ONE
10
,
e0125040
(
2015
).
22.
M.
Ciuti
,
G.
Zampogna
,
F.
Gallaire
,
S.
Camarri
, and
P.
Ledda
, “
On the effect of a penetrating recirculation region on the bifurcations of the flow past a permeable sphere
,”
Phys. Fluids
33
,
124103
(
2021
).
23.
C.
Cummins
,
I. M.
Viola
,
E.
Mastropaolo
, and
N.
Nakayama
, “
The effect of permeability on the flow past permeable disks at low Reynolds numbers
,”
Phys. Fluids
29
,
097103
(
2017
).
24.
P. G.
Ledda
,
L.
Siconolfi
,
F.
Viola
,
F.
Gallaire
, and
S.
Camarri
, “
Suppression of von Kármán vortex streets past porous rectangular cylinders
,”
Phys. Rev. Fluids
3
,
103901
(
2018
).
25.
T.
Tang
,
J.
Xie
,
S.
Yu
,
J.
Li
, and
P.
Yu
, “
Effect of aspect ratio on flow through and around a porous disk
,”
Phys. Rev. Fluids
6
,
074101
(
2021
).
26.
L.
Zong
and
H.
Nepf
, “
Vortex development behind a finite porous obstruction in a channel
,”
J. Fluid Mech.
691
,
368
391
(
2012
).
27.
M.
Liu
,
C.
Xie
,
M.
Yao
, and
J.
Yang
, “
Study on the near wake of a honeycomb disk
,”
Exp. Therm Fluid Sci.
81
,
33
42
(
2017
).
28.
K.
Steiros
,
K.
Kokmanian
,
N.
Bempedelis
, and
M.
Hultmark
, “
The effect of porosity on the drag of cylinders
,”
J. Fluid Mech.
901
,
R2
(
2020
).
29.
P. G.
Ledda
,
L.
Siconolfi
,
F.
Viola
,
S.
Camarri
, and
F.
Gallaire
, “
Flow dynamics of a dandelion pappus: A linear stability approach
,”
Phys. Rev. Fluids
4
,
071901
(
2019
).
30.
P. G.
Ledda
,
E.
Boujo
,
S.
Camarri
,
F.
Gallaire
, and
G.
Zampogna
, “
Homogenization-based design of microstructured membranes: Wake flows past permeable shells
,”
J. Fluid Mech.
927
,
A31
(
2021
).
31.
D.
Fabre
,
P.
Assemat
, and
J.
Magnaudet
, “
A quasi-static approach to the stability of the path of heavy bodies falling within a viscous fluid
,”
J. Fluids Struct.
27
,
758
767
(
2011
).
32.
J.
Tchoufag
,
J.
Magnaudet
, and
D.
Fabre
, “
Linear instability of the path of a freely rising spheroidal bubble
,”
J. Fluid Mech.
751
,
R4
(
2014
).
33.
D.
Sujudi
and
R.
Haimes
, “
Identification of swirling flow in 3-D vector fields
,” in the
12th Computational Fluid Dynamics Conference,
San Diego, CA
(
AIAA
,
1995
).
You do not currently have access to this content.