The current work qualitatively surveys the phenomenon of polymer drag reduction from the standpoint of the salient coherent motions in the near-wall region of wall-bounded turbulent flows. In an attempt to make the work self-containing, turbulence is introduced phenomenologically in terms of the scale separation concept. In concert with this theme, the idea of drag crisis is then developed in terms of reduction in this scale separation. Leveraging such a perspective, it is explained how the polymer chain dynamics spatiotemporally modulate the near-wall structure of turbulent boundary layers to affect drag reduction. To this end, a sea of literature pertaining to coherent motions in Newtonian wall-bounded flows is juxtaposed with the turbulence-inhibiting characteristics of polymer chains to develop a polymer-modified version for the near-wall cycle of turbulence generation and its sustenance. The future of polymer drag reduction, in light of the current state of knowledge and contemporary challenges, is also discussed.

1.
A. A.
Fontaine
,
H. L.
Petrie
, and
T. A.
Brungart
, “
Velocity profile statistics in a turbulent boundary layer with slot-injected polymer
,”
J. Fluid Mech.
238
,
435
466
(
1992
).
2.
B. R.
Elbing
,
M. J.
Solomon
,
M.
Perlin
,
D. R.
Dowling
, and
S. L.
Ceccio
, “
Flow-induced degradation of drag-reducing polymer solutions within a high-Reynolds-number turbulent boundary layer
,”
J. Fluid Mech.
670
,
337
364
(
2011
).
3.
B. R.
Elbing
,
E. S.
Winkel
,
S. L.
Ceccio
,
M.
Perlin
, and
D. R.
Dowling
, “
High-Reynolds-number turbulent-boundary-layer wall-pressure fluctuations with dilute polymer solutions
,”
Phys. Fluids
22
,
085104
(
2010
).
4.
B. A.
Toms
, “
Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers
,” in
Proceedings of First International Congress on Rheology
(
North-Holland, Amsterdam
,
1948
), Vol.
2
, pp.
135
141
.
5.
C. M.
White
and
M. G.
Mungal
, “
Mechanics and prediction of turbulent drag reduction with polymer additives
,”
Annu. Rev. Fluid Mech.
40
,
235
256
(
2008
).
6.
L.
Xi
, “
Turbulent drag reduction by polymer additives: Fundamentals and recent advances
,”
Phys. Fluids
31
,
121302
(
2019
).
7.
D.
Samanta
,
Y.
Dubief
,
M.
Holzner
,
C.
Schäfer
,
A. N.
Morozov
,
C.
Wagner
, and
B.
Hof
, “
Elasto-inertial turbulence
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
10557
10562
(
2013
).
8.
L.
Xi
and
M. D.
Graham
, “
Active and hibernating turbulence in minimal channel flow of Newtonian and polymeric fluids
,”
Phys. Rev. Lett.
104
,
218301
(
2010
).
9.
H.
Perkins
, “
The formation of streamwise vorticity in turbulent flow
,”
J. Fluid Mech.
44
,
721
740
(
1970
).
10.
J.-Z.
Wu
,
H.-Y.
Ma
, and
M.-D.
Zhou
,
Vorticity and Vortex Dynamics
(
Springer Science & Business Media
,
2007
).
11.
S. K.
Lele
, “
Vorticity form of turbulence transport equations
,”
Phys. Fluids A
4
,
1767
1772
(
1992
).
12.
P.
Fife
,
T.
Wei
,
J.
Klewicki
, and
P.
McMurtry
, “
Stress gradient balance layers and scale hierarchies in wall-bounded turbulent flows
,”
J. Fluid Mech.
532
,
165
189
(
2005
).
13.
J.
Klewicki
,
P.
Fife
, and
T.
Wei
, “
On the logarithmic mean profile
,”
J. Fluid Mech.
638
,
73
93
(
2009
).
14.
D.
Coles
, “
The law of the wake in the turbulent boundary layer
,”
J. Fluid Mech.
1
,
191
226
(
1956
).
15.
D.
Coles
, “
The turbulent boundary layer in a compressible fluid
,”
Phys. Fluids
7
,
1403
1423
(
1964
).
16.
A. N.
Kolmogorov
, “
The local structure of turbulence in incompressible viscous fluid for very large Reynolds number
,”
Dokl. Akad. Nauk. SSSR
30
,
301
303
(
1941
).
17.
L. F.
Richardson
,
Weather Prediction by Numerical Process
(
University Press
,
1922
).
18.
G. K.
Batchelor
,
The Theory of Homogeneous Turbulence
(
Cambridge University Press
,
1953
).
19.
P. G.
Saffman
, “
A model for inhomogeneous turbulent flow
,”
Proc. R. Soc. London, Ser. A: Math. Phys. Sci.
317
,
417
433
(
1970
).
20.
P. A.
Davidson
,
Turbulence: An Introduction for Scientists and Engineers
(
Oxford University Press
,
2015
).
21.
D.
Wilcox
and
I.
Alber
, “
A turbulence model for high speed flows
,” in
Proceedings of the 1972 Heat Transfer and Fluid Mechanics Institute
(
Stanford University Press
,
1972
), Vol.
231
, p.
252
.
22.
P. L.
Johnson
, “
Energy transfer from large to small scales in turbulence by multiscale nonlinear strain and vorticity interactions
,”
Phys. Rev. Lett.
124
,
104501
(
2020
).
23.
I.
Tani
, “
History of boundary layer theory
,”
Annu. Rev. Fluid Mech.
9
,
87
111
(
1977
).
24.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT Press
,
1972
).
25.
B. J.
Mckeon
,
J-d
Li
,
W.
Jiang
,
J. F.
Morrison
, and
A. J.
Smits
, “
Further observations on the mean velocity distribution in fully developed pipe flow
,”
J. Fluid Mech.
501
,
135
147
(
2004
).
26.
H. M.
Nagib
and
K. A.
Chauhan
, “
Variations of von Kármán coefficient in canonical flows
,”
Phys. Fluids
20
,
101518
(
2008
).
27.
J.
Klewicki
, “
Properties of turbulent channel flow similarity solutions
,”
J. Fluid Mech.
915
,
A39
(
2021
).
28.
J.
Jimenez
and
S.
Hoyas
, “
Turbulent fluctuations above the buffer layer of wall-bounded flows
,”
J. Fluid Mech.
611
,
215
236
(
2008
).
29.
A.
Townsend
,
The Structure of Turbulent Shear Flow
(
Cambridge University Press
,
1976
).
30.
A.
Perry
,
T.
Lim
, and
M.
Chong
, “
The instantaneous velocity fields of coherent structures in coflowing jets and wakes
,”
J. Fluid Mech.
101
,
243
256
(
1980
).
31.
A.
Perry
and
M.
Chong
, “
On the mechanism of wall turbulence
,”
J. Fluid Mech.
119
,
173
217
(
1982
).
32.
I.
Marusic
and
J. P.
Monty
, “
Attached eddy model of wall turbulence
,”
Annu. Rev. Fluid Mech.
51
,
49
74
(
2019
).
33.
J.
Jiménez
, “
Cascades in wall-bounded turbulence
,”
Annu. Rev. Fluid Mech.
44
,
27
45
(
2012
).
34.
I.
Marusic
,
J. P.
Monty
,
M.
Hultmark
, and
A. J.
Smits
, “
On the logarithmic region in wall turbulence
,”
J. Fluid Mech.
716
,
R3
(
2013
).
35.
D. B.
De Graaff
and
J. K.
Eaton
, “
Reynolds-number scaling of the flat-plate turbulent boundary layer
,”
J. Fluid Mech.
422
,
319
346
(
2000
).
36.
H. P.
Bakewell
, Jr
and
J. L.
Lumley
, “
Viscous sublayer and adjacent wall region in turbulent pipe flow
,”
Phys. Fluids
10
,
1880
1889
(
1967
).
37.
J.
Sheng
,
E.
Malkiel
, and
J.
Katz
, “
Buffer layer structures associated with extreme wall stress events in a smooth wall turbulent boundary layer
,”
J. Fluid Mech.
633
,
17
60
(
2009
).
38.
J.
Hinze
,
Turbulence
(McGraw-Hill,
1975
).
39.
P.
Bradshaw
, “
‘Inactive’ motion and pressure fluctuations in turbulent boundary layers
,”
J. Fluid Mech.
30
,
241
258
(
1967
).
40.
R.
Deshpande
,
J. P.
Monty
, and
I.
Marusic
, “
Active and inactive components of the streamwise velocity in wall-bounded turbulence
,”
J. Fluid Mech.
914
,
A5
(
2021
).
41.
I.
Marusic
,
R.
Mathis
, and
N.
Hutchins
, “
Predictive model for wall-bounded turbulent flow
,”
Science
329
,
193
196
(
2010
).
42.
J.
Klewicki
, “
Velocity–vorticity correlations related to the gradients of the Reynolds stresses in parallel turbulent wall flows
,”
Phys. Fluids A
1
,
1285
1288
(
1989
).
43.
R.
Sureshkumar
,
A. N.
Beris
, and
R. A.
Handler
, “
Direct numerical simulation of the turbulent channel flow of a polymer solution
,”
Phys. Fluids
9
,
743
755
(
1997
).
44.
R. B.
Bird
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids, Volume 2: Kinetic Theory
(
Wiley
,
1987
).
45.
J. G.
Oldroyd
, “
On the formulation of rheological equations of state
,”
Proc. R. Soc. London, Ser. A: Math. Phys. Sci.
200
,
523
541
(
1950
).
46.
H.
Giesekus
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
,
69
109
(
1982
).
47.
T.
Min
,
J. Y.
Yoo
,
H.
Choi
, and
D. D.
Joseph
, “
Drag reduction by polymer additives in a turbulent channel flow
,”
J. Fluid Mech.
486
,
213
238
(
2003
).
48.
S.
Tamano
,
M.
Itoh
,
K.
Hoshizaki
, and
K.
Yokota
, “
Direct numerical simulation of the drag-reducing turbulent boundary layer of viscoelastic fluid
,”
Phys. Fluids
19
,
075106
(
2007
).
49.
L. G.
Treloar
,
The Physics of Rubber Elasticity
(
Oxford University Press
,
1975
).
50.
M.
Kroeger
, “
Simple, admissible, and accurate approximants of the inverse Langevin and Brillouin functions, relevant for strong polymer deformations and flows
,”
J. Non-Newtonian Fluid Mech.
223
,
77
87
(
2015
).
51.
A.
Peterlin
, “
Hydrodynamics of macromolecules in a velocity field with longitudinal gradient
,”
J. Polym. Sci. Part B: Polym. Lett.
4
,
287
291
(
1966
).
52.
N. S.
Berman
, “
Drag reduction by polymers
,”
Annu. Rev. Fluid Mech.
10
,
47
64
(
1978
).
53.
M. D.
Graham
, “
Drag reduction in turbulent flow of polymer solutions
,”
Rheol. Rev.
2
,
143
170
(
2004
).
54.
F.
Bailey
, Jr.
and
R.
Callard
, “
Some properties of poly (ethylene oxide) 1 in aqueous solution
,”
J. Appl. Polym. Sci.
1
,
56
62
(
1959
).
55.
B. H.
Zimm
, “
Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence and dielectric loss
,”
J. Chem. Phys.
24
,
269
278
(
1956
).
56.
A.
Metzner
,
J.
White
, and
M.
Denn
, “
Constitutive equations for viscoelastic fluids for short deformation periods and for rapidly changing flows: Significance of the Deborah number
,”
AIChE J.
12
,
863
866
(
1966
).
57.
J. L.
Lumley
, “
Drag reduction by additives
,”
Annu. Rev. Fluid Mech.
1
,
367
384
(
1969
).
58.
J. L.
Lumley
, “
Drag reduction in turbulent flow by polymer additives
,”
J. Polym. Sci.: Macromol. Rev.
7
,
263
290
(
1973
).
59.
J.
Den Toonder
,
F.
Nieuwstadt
, and
G.
Kuiken
, “
The role of elongational viscosity in the mechanism of drag reduction by polymer additives
,”
Appl. Sci. Res.
54
,
95
123
(
1995
).
60.
P.-G.
De Gennes
,
Introduction to Polymer Dynamics
(
CUP Archive
,
1990
).
61.
W. W.
Graessley
, “
The entanglement concept in polymer rheology
,” in
The Entanglement Concept in Polymer Rheology
(
Springer
,
1974
), pp.
1
179
.
62.
Y.
Rabin
and
B. J.
Zielinska
, “
Scale-dependent enhancement and damping of vorticity disturbances by polymers in elongational flow
,”
Phys. Rev. Lett.
63
,
512
(
1989
).
63.
G. H.
Choueiri
,
J. M.
Lopez
, and
B.
Hof
, “
Exceeding the asymptotic limit of polymer drag reduction
,”
Phys. Rev. Lett.
120
,
124501
(
2018
).
64.
L.
Xi
and
M. D.
Graham
, “
Turbulent drag reduction and multistage transitions in viscoelastic minimal flow units
,”
J. Fluid Mech.
647
,
421
452
(
2010
).
65.
P. S.
Virk
, “
Drag reduction fundamentals
,”
AIChE J.
21
,
625
656
(
1975
).
66.
L.
Prandtl
, “
7. bericht über untersuchungen zur ausgebildeten turbulenz
,”
ZAMM-J. Appl. Math. Mech.
5
,
136
139
(
1925
).
67.
A. F.
Hussain
, “
Coherent structures–reality and myth
,”
Phys. Fluids
26
,
2816
2850
(
1983
).
68.
S. K.
Robinson
, “
Coherent motions in the turbulent boundary layer
,”
Annu. Rev. Fluid Mech.
23
,
601
639
(
1991
).
69.
R. L.
Panton
, “
Overview of the self-sustaining mechanisms of wall turbulence
,”
Prog. Aerosp. Sci.
37
,
341
383
(
2001
).
70.
B. J.
Cantwell
, “
Organized motion in turbulent flow
,”
Annu. Rev. Fluid Mech.
13
,
457
515
(
1981
).
71.
J.
Vassilicos
et al,
Turbulence Structure and Vortex Dynamics
(
Cambridge University Press
,
2000
).
72.
T.
Theodorsen
, “
Mechanisms of turbulence
,” in
Proceedings of the 2nd Midwestern Conference on Fluid Mechanics
(
1952
).
73.
M. J.
Lighthill
, “
Introduction boundary layer theory
,” in
Laminar Boundary Layers
(
Clarendon Press
,
1963
).
74.
S. J.
Kline
,
W. C.
Reynolds
,
F.
Schraub
, and
P.
Runstadler
, “
The structure of turbulent boundary layers
,”
J. Fluid Mech.
30
,
741
773
(
1967
).
75.
W.
Willmarth
and
S.
Lu
, “
Structure of the Reynolds stress near the wall
,”
J. Fluid Mech.
55
,
65
92
(
1972
).
76.
P.
Moin
and
J.
Kim
, “
The structure of the vorticity field in turbulent channel flow. part 1. analysis of instantaneous fields and statistical correlations
,”
J. Fluid Mech.
155
,
441
464
(
1985
).
77.
H.
Kim
,
S.
Kline
, and
W.
Reynolds
, “
The production of turbulence near a smooth wall in a turbulent boundary layer
,”
J. Fluid Mech.
50
,
133
160
(
1971
).
78.
J. A.
Clark
and
E.
Markland
, “
Flow visualization in turbulent boundary layers
,”
J. Hydraul. Div.
97
,
1653
1664
(
1971
).
79.
G.
Offen
and
S.
Kline
, “
A proposed model of the bursting process in turbulent boundary layers
,”
J. Fluid Mech.
70
,
209
228
(
1975
).
80.
R. F.
Blackwelder
and
H.
Eckelmann
, “
Streamwise vortices associated with the bursting phenomenon
,”
J. Fluid Mech.
94
,
577
594
(
1979
).
81.
C.
Smith
and
S.
Schwartz
, “
Observation of streamwise rotation in the near-wall region of a turbulent boundary layer
,”
Phys. Fluids
26
,
641
652
(
1983
).
82.
J.
Morrison
,
C.
Subramanian
, and
P.
Bradshaw
, “
Bursts and the law of the wall in turbulent boundary layers
,”
J. Fluid Mech.
241
,
75
108
(
1992
).
83.
C.
Smith
and
S.
Metzler
, “
The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer
,”
J. Fluid Mech.
129
,
27
54
(
1983
).
84.
C.
Smith
, “
A synthesized model of the near-wall behavior in turbulent boundary layers
,” in
Proceedings of Eighth Symposium on Turbulence
(
LeHigh University Bethlehem
,
1984
).
85.
M.
Head
and
P.
Bandyopadhyay
, “
New aspects of turbulent boundary-layer structure
,”
J. Fluid Mech.
107
,
297
338
(
1981
).
86.
S.
Robinson
,
S. J.
Kline
, and
P.
Spalart
, “
A review of quasi-coherent structures in a numerically simulated turbulent boundary layer
,”
Report No. NASA-TM-102191
(
1989
).
87.
C. R.
Smith
,
J.
Walker
,
A.
Haidari
, and
U.
Sobrun
, “
On the dynamics of near-wall turbulence
,”
Philos. Trans. R. Soc. London, Ser. A: Phys. Eng. Sci.
336
,
131
175
(
1991
).
88.
T.
Doligalski
and
J.
Walker
, “
The boundary layer induced by a convected two-dimensional vortex
,”
J. Fluid Mech.
139
,
1
28
(
1984
).
89.
J.
Jiménez
and
A.
Pinelli
, “
The autonomous cycle of near-wall turbulence
,”
J. Fluid Mech.
389
,
335
359
(
1999
).
90.
M.
Metzger
,
A.
Fershtut
,
C.
Kunkel
, and
J.
Klewicki
, “
Reynolds number scaling of pocket events in the viscous sublayer
,”
Phys. Rev. Fluids
2
,
124602
(
2017
).
91.
T.
Luchik
and
W.
Tiederman
, “
Turbulent structure in low-concentration drag-reducing channel flows
,”
J. Fluid Mech.
190
,
241
263
(
1988
).
92.
A.
Gyr
and
H.-W.
Bewersdorff
,
Drag Reduction of Turbulent Flows by Additives
(
Springer Science & Business Media
,
2013
), Vol.
32
.
93.
S. J.
Kline
and
N. H.
Afgan
,
Near-wall Turbulence
(
Hemisphere Publishing Corporation, Taylor and Francis Group
,
1990
).
94.
C. S.
Wells
, Jr.
and
J. G.
Spangler
, “
Injection of a drag-reducing fluid into turbulent pipe flow of a Newtonian fluid
,”
Phys. Fluids
10
,
1890
1894
(
1967
).
95.
G.
Donohue
,
W.
Tiederman
, and
M.
Reischman
, “
Flow visualization of the near-wall region in a drag-reducing channel flow
,”
J. Fluid Mech.
56
,
559
575
(
1972
).
96.
J.
Wu
and
M. P.
Tulin
, “
Drag reduction by ejecting additive solutions into pure-water boundary layer
,”
J. Basic Eng.
94
,
749
(
1972
).
97.
M.
Reischman
and
W.
Tiederman
, “
Laser-doppler anemometer measurements in drag-reducing channel flows
,”
J. Fluid Mech.
70
,
369
392
(
1975
).
98.
W. G.
Tiederman
,
T. S.
Luchik
, and
D.
Bogard
, “
Wall-layer structure and drag reduction
,”
J. Fluid Mech.
156
,
419
437
(
1985
).
99.
T.
Wei
and
W.
Willmarth
, “
Modifying turbulent structure with drag-reducing polymer additives in turbulent channel flows
,”
J. Fluid Mech.
245
,
619
641
(
1992
).
100.
C.
White
,
V.
Somandepalli
, and
M.
Mungal
, “
The turbulence structure of drag-reduced boundary layer flow
,”
Exp. Fluids
36
,
62
69
(
2004
).
101.
A.
Schmid
, “
Experimental investigation of the influence of drag reducing polymers on a turbulent channel flow
,” in
Third International Conference on Drag Reduction, Proceedings
edited by
R. H.
Sellin
and
R. T.
Moses
(
University of Bristol
,
1984
), Vol.
12
.
102.
D.
Walker
and
W.
Tiederman
, “
Turbulent structure in a channel flow with polymer injection at the wall
,”
J. Fluid Mech.
218
,
377
403
(
1990
).
103.
J.
Den Toonder
,
M.
Hulsen
,
G.
Kuiken
, and
F.
Nieuwstadt
, “
Drag reduction by polymer additives in a turbulent pipe flow: Numerical and laboratory experiments
,”
J. Fluid Mech.
337
,
193
231
(
1997
).
104.
B.
Gampert
and
C.
Yong
, “
The influence of polymer additives on the coherent structure of turbulent channel flow
,” in
Structure of Turbulence and Drag Reduction
(
Springer
,
1990
), pp.
223
232
.
105.
M.
Warholic
,
H.
Massah
, and
T.
Hanratty
, “
Influence of drag-reducing polymers on turbulence: Effects of Reynolds number, concentration and mixing
,”
Exp. Fluids
27
,
461
472
(
1999
).
106.
P.
Ptasinski
,
B.
Boersma
,
F.
Nieuwstadt
,
M.
Hulsen
,
B.
Van den Brule
, and
J.
Hunt
, “
Turbulent channel flow near maximum drag reduction: Simulations, experiments and mechanisms
,”
J. Fluid Mech.
490
,
251
291
(
2003
).
107.
J.
Jeong
,
F.
Hussain
,
W.
Schoppa
, and
J.
Kim
, “
Coherent structures near the wall in a turbulent channel flow
,”
J. Fluid Mech.
332
,
185
214
(
1997
).
108.
B.
Frohnapfel
,
P.
Lammers
,
J.
Jovanović
, and
F.
Durst
, “
Interpretation of the mechanism associated with turbulent drag reduction in terms of anisotropy invariants
,”
J. Fluid Mech.
577
,
457
466
(
2007
).
109.
Y.
Shah
,
S.
Ghaemi
, and
S.
Yarusevych
, “
Three-dimensional characterization of Reynolds shear stress in near-wall coherent structures of polymer drag reduced turbulent boundary layers
,”
Exp. Fluids
62
,
166
(
2021
).
110.
J.
Zhou
,
R. J.
Adrian
,
S.
Balachandar
, and
T.
Kendall
, “
Mechanisms for generating coherent packets of hairpin vortices in channel flow
,”
J. Fluid Mech.
387
,
353
396
(
1999
).
111.
J. M.
Hamilton
,
J.
Kim
, and
F.
Waleffe
, “
Regeneration mechanisms of near-wall turbulence structures
,”
J. Fluid Mech.
287
,
317
348
(
1995
).
112.
M.
Warholic
,
D.
Heist
,
M.
Katcher
, and
T.
Hanratty
, “
A study with particle-image velocimetry of the influence of drag-reducing polymers on the structure of turbulence
,”
Exp. Fluids
31
,
474
483
(
2001
).
113.
E. S.
Winkel
,
G.
Oweis
,
S.
Vanapalli
,
D. R.
Dowling
,
M.
Perlin
,
M.
Solomon
, and
S.
Ceccio
, “
High-Reynolds-number turbulent boundary layer friction drag reduction from wall-injected polymer solutions
,”
J. Fluid Mech.
621
,
259
288
(
2009
).
114.
B.
Elbing
,
M.
Perlin
,
D.
Dowling
, and
S.
Ceccio
, “
Modification of the mean near-wall velocity profile of a high-Reynolds number turbulent boundary layer with the injection of drag-reducing polymer solutions
,”
Phys. Fluids
25
,
085103
085113
(
2013
).
115.
J. R.
Elsnab
,
J. P.
Monty
,
C. M.
White
,
M. M.
Koochesfahani
, and
J. C.
Klewicki
, “
High-fidelity measurements in channel flow with polymer wall injection
,”
J. Fluid Mech.
859
,
851
886
(
2019
).
116.
C.
White
,
Y.
Dubief
, and
J.
Klewicki
, “
Re-examining the logarithmic dependence of the mean velocity distribution in polymer drag reduced wall-bounded flow
,”
Phys. Fluids
24
,
021701
(
2012
).
117.
H.
Petrie
,
A.
Fontaine
,
M.
Moeny
, and
S.
Deutsch
, “
Experimental study of slot-injected polymer drag reduction
,” in
Proceedings of the 2nd International Symposium on Seawater Drag Reduction, Busan
(
2005
), Vol.
605620
.
118.
Y.
Farsiani
,
Z.
Saeed
,
B.
Jayaraman
, and
B. R.
Elbing
, “
Modification of turbulent boundary layer coherent structures with drag reducing polymer solution
,”
Phys. Fluids
32
,
015107
(
2020
).
119.
Y.
Hou
,
V.
Somandepalli
, and
M.
Mungal
, “
Streamwise development of turbulent boundary-layer drag reduction with polymer injection
,”
J. Fluid Mech.
597
,
31
66
(
2008
).
120.
C.
White
,
Y.
Dubief
, and
J.
Klewicki
, “
Properties of the mean momentum balance in polymer drag-reduced channel flow
,”
J. Fluid Mech.
834
,
409
433
(
2018
).
121.
B.
Elbing
, “
Impact of polymer degradation on past studies of the mean velocity profile in turbulent boundary layers
,”
J. Fluids Eng.
143
,
081101
(
2021
).
122.
K.
Kim
and
R.
Sureshkumar
, “
Spatiotemporal evolution of hairpin eddies, Reynolds stress, and polymer torque in polymer drag-reduced turbulent channel flows
,”
Phys. Rev. E
87
,
063002
(
2013
).
123.
K.
Kim
,
R. J.
Adrian
,
S.
Balachandar
, and
R.
Sureshkumar
, “
Dynamics of hairpin vortices and polymer-induced turbulent drag reduction
,”
Phys. Rev. Lett.
100
,
134504
(
2008
).
124.
Y.
Dubief
,
C. M.
White
,
V. E.
Terrapon
,
E. S.
Shaqfeh
,
P.
Moin
, and
S. K.
Lele
, “
On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows
,”
J. Fluid Mech.
514
,
271
280
(
2004
).
125.
S.
Sibilla
and
A.
Baron
, “
Polymer stress statistics in the near-wall turbulent flow of a drag-reducing solution
,”
Phys. Fluids
14
,
1123
1136
(
2002
).
126.
C.-F.
Li
,
R.
Sureshkumar
, and
B.
Khomami
, “
Influence of rheological parameters on polymer induced turbulent drag reduction
,”
J. Non-Newtonian Fluid Mech.
140
,
23
40
(
2006
).
127.
T.
Min
,
H.
Choi
, and
J. Y.
Yoo
, “
Maximum drag reduction in a turbulent channel flow by polymer additives
,”
J. Fluid Mech.
492
,
91
100
(
2003
).
128.
P.
Ptasinski
,
F.
Nieuwstadt
,
B.
Van Den Brule
, and
M.
Hulsen
, “
Experiments in turbulent pipe flow with polymer additives at maximum drag reduction
,”
Flow, Turbul. Combust.
66
,
159
182
(
2001
).
129.
S.
Sibilla
and
C. P.
Beretta
, “
Near-wall coherent structures in the turbulent channel flow of a dilute polymer solution
,”
Fluid Dyn. Res.
37
,
183
(
2005
).
130.
G.
Iaccarino
,
E. S.
Shaqfeh
, and
Y.
Dubief
, “
Reynolds-averaged modeling of polymer drag reduction in turbulent flows
,”
J. Non-Newtonian Fluid Mech.
165
,
376
384
(
2010
).
131.
J. M.
Wallace
, “
Quadrant analysis in turbulence research: History and evolution
,”
Annu. Rev. Fluid Mech.
48
,
131
158
(
2016
).
132.
W.-H.
Cai
,
F.-C.
Li
,
H.-N.
Zhang
,
X.-B.
Li
,
B.
Yu
,
J.-J.
Wei
,
Y.
Kawaguchi
, and
K.
Hishida
, “
Study on the characteristics of turbulent drag-reducing channel flow by particle image velocimetry combining with proper orthogonal decomposition analysis
,”
Phys. Fluids
21
,
115103
(
2009
).
133.
S.
Shaban
,
M.
Azad
,
J.
Trivedi
, and
S.
Ghaemi
, “
Investigation of near-wall turbulence in relation to polymer rheology
,”
Phys. Fluids
30
,
125111
(
2018
).
134.
A.
Gyr
and
A.
Tsinober
, “
On some local aspects of turbulent drag reducing flows of dilute polymers and surfactants
,” in
Advances in Turbulence VI: Proceedings of the Sixth European Turbulence Conference, Held in Lausanne
, Switzerland, 2–5 July 1996 (
Springer
,
1996
), pp.
449
452
.
135.
K. D.
Housiadas
,
A. N.
Beris
, and
R. A.
Handler
, “
Viscoelastic effects on higher order statistics and on coherent structures in turbulent channel flow
,”
Phys. Fluids
17
,
035106
(
2005
).
136.
C. D.
Dimitropoulos
,
R.
Sureshkumar
,
A. N.
Beris
, and
R. A.
Handler
, “
Budgets of Reynolds stress, kinetic energy and streamwise enstrophy in viscoelastic turbulent channel flow
,”
Phys. Fluids
13
,
1016
1027
(
2001
).
137.
C. D.
Dritselis
and
N. S.
Vlachos
, “
Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow
,”
Phys. Fluids
20
,
055103
(
2008
).
138.
V.
Terrapon
,
Y.
Dubief
,
P.
Moin
,
E. S.
Shaqfeh
, and
S. K.
Lele
, “
Simulated polymer stretch in a turbulent flow using Brownian dynamics
,”
J. Fluid Mech.
504
,
61
71
(
2004
).
139.
K.
Kim
,
C.-F.
Li
,
R.
Sureshkumar
,
S.
Balachandar
, and
R. J.
Adrian
, “
Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow
,”
J. Fluid Mech.
584
,
281
299
(
2007
).
140.
R.
Adrian
,
K.
Christensen
, and
Z.-C.
Liu
, “
Analysis and interpretation of instantaneous turbulent velocity fields
,”
Exp. Fluids
29
,
275
290
(
2000
).
141.
J.
Hunt
,
I.
Eames
,
J.
Westerweel
,
P.
Davidson
,
S.
Voropayev
,
J.
Fernando
, and
M.
Braza
, “
Thin shear layers–the key to turbulence structure?
,”
J. Hydro-Environ. Res.
4
,
75
82
(
2010
).
142.
E.
De Angelis
,
C.
Casciola
,
R.
Benzi
, and
R.
Piva
, “
Homogeneous isotropic turbulence in dilute polymers
,”
J. Fluid Mech.
531
,
1
10
(
2005
).
143.
R.
Benzi
,
E. S.
Ching
, and
I.
Procaccia
, “
Drag reduction in homogeneous turbulence by scale-dependent effective viscosity
,”
Phys. Rev. E
70
,
026304
(
2004
).
144.
G.
Berkooz
,
P.
Holmes
, and
J. L.
Lumley
, “
The proper orthogonal decomposition in the analysis of turbulent flows
,”
Annu. Rev. Fluid Mech.
25
,
539
575
(
1993
).
145.
W.
Cai
,
F.
Li
,
H.
Zhang
,
Y.
Wang
, and
L.
Wang
, “
Analysis of coherent structures in drag-reducing polymer solution flow based on proper orthogonal decomposition
,”
Sci. China Phys., Mech. Astron.
55
,
854
860
(
2012
).
146.
P. S.
Bernard
and
J. M.
Wallace
,
Turbulent Flow: Analysis, Measurement, and Prediction
(
John Wiley & Sons
,
2002
).
147.
R. G.
Jacobs
and
P. A.
Durbin
, “
Shear sheltering and the continuous spectrum of the Orr–Sommerfeld equation
,”
Phys. Fluids
10
,
2006
2011
(
1998
).
148.
J.
Hunt
and
P.
Durbin
, “
Perturbed vortical layers and shear sheltering
,”
Fluid Dyn. Res.
24
,
375
(
1999
).
149.
M.
Stanislas
,
L.
Perret
, and
J.-M.
Foucaut
, “
Vortical structures in the turbulent boundary layer: A possible route to a universal representation
,”
J. Fluid Mech.
602
,
327
382
(
2008
).
150.
I.
Marusic
and
R.
Adrian
, “
The eddies and scales of wall turbulence
,” in
Ten Chapters in Turbulence
(
Cambridge University Press
,
2013
), pp.
176
220
.
151.
P.
Priyadarshana
,
J.
Klewicki
,
S.
Treat
, and
J.
Foss
, “
Statistical structure of turbulent-boundary-layer velocity–vorticity products at high and low Reynolds numbers
,”
J. Fluid Mech.
570
,
307
346
(
2007
).
152.
J.
Klewicki
,
J.
Murray
, and
R.
Falco
, “
Vortical motion contributions to stress transport in turbulent boundary layers
,”
Phys. Fluids
6
,
277
286
(
1994
).
153.
H.
Choi
,
P.
Moin
, and
J.
Kim
, “
Active turbulence control for drag reduction in wall-bounded flows
,”
J. Fluid Mech.
262
,
75
110
(
1994
).
154.
M.
Raupach
, “
Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers
,”
J. Fluid Mech.
108
,
363
382
(
1981
).
155.
W. D.
McComb
,
The Physics of Fluid Turbulence
(
Oxford University Press
,
Oxford
,
1990
).
156.
J.-H.
Lee
and
H. J.
Sung
, “
Structures in turbulent boundary layers subjected to adverse pressure gradients
,”
J. Fluid Mech.
639
,
101
131
(
2009
).
157.
R.
Falco
, “
A coherent structure model of the turbulent boundary layer and its ability to predict Reynolds number dependence
,”
Philos. Trans. R. Soc. London, Ser. A: Phys. Eng. Sci.
336
,
103
129
(
1991
).
158.
M.
Ebrahimian
,
R.
Sanders
, and
S.
Ghaemi
, “
Near-wall motion of inertial particles in a drag-reduced non-Newtonian turbulent flow
,”
Exp. Fluids
60
,
117
(
2019
).
159.
L.
Zhu
and
L.
Xi
, “
Vortex dynamics in low-and high-extent polymer drag reduction regimes revealed by vortex tracking and conformation analysis
,”
Phys. Fluids
31
,
095103
(
2019
).
160.
R. J.
Adrian
, “
Hairpin vortex organization in wall turbulence
,”
Phys. Fluids
19
,
041301
(
2007
).
161.
Y.
Shah
,
S.
Ghaemi
, and
S.
Yarusevych
, “
Experimental investigation of extreme skin friction events in polymer drag-reduced turbulent boundary layers
,”
Exp. Fluids
63
,
27
(
2022
).
162.
A.
Liberzon
,
M.
Guala
,
W.
Kinzelbach
, and
A.
Tsinober
, “
On turbulent kinetic energy production and dissipation in dilute polymer solutions
,”
Phys. Fluids
18
,
125101
(
2006
).
163.
K.
Kim
and
R.
Sureshkumar
, “
Synergy in the organization of near-wall and bulk turbulence structures in viscoelastic turbulent channel flow in the high drag reduction regime
,”
Phys. Fluids
32
,
031703
(
2020
).
164.
H.-D.
Xi
,
E.
Bodenschatz
, and
H.
Xu
, “
Elastic energy flux by flexible polymers in fluid turbulence
,”
Phys. Rev. Lett.
111
,
024501
(
2013
).
165.
P.
Valente
,
C.
Da Silva
, and
F.
Pinho
, “
The effect of viscoelasticity on the turbulent kinetic energy cascade
,”
J. Fluid Mech.
760
,
39
62
(
2014
).
166.
W.
Ostwald
and
R.
Auerbach
, “
Ueber die viskosität kolloider lösungen im struktur-, laminar-und turbulenzgebiet: Ueber die geschwindigkeitsfunktion der viskosität disperser systeme, V
,”
Kolloid-Z.
38
,
261
280
(
1926
).
167.
Y.
Dubief
,
V. E.
Terrapon
, and
B.
Hof
, “
Elasto-inertial turbulence
,”
Annu. Rev. Fluid Mech.
55
,
675
(
2023
).
168.
M. D.
Graham
and
D.
Floryan
, “
Exact coherent states and the nonlinear dynamics of wall-bounded turbulent flows
,”
Annu. Rev. Fluid Mech.
53
,
227
253
(
2021
).
169.
R. J.
Etter
,
J. M.
Cutbirth
,
S. L.
Ceccio
,
D. R.
Dowling
, and
M.
Perlin
, “
High Reynolds number experimentation in the U.S. Navy's William B. Morgan large cavitation channel
,”
Meas. Sci. Technol.
16
,
1701
1709
(
2005
).
170.
R. W.
Paterson
and
F.
Abernathy
, “
Turbulent flow drag reduction and degradation with dilute polymer solutions
,”
J. Fluid Mech.
43
,
689
710
(
1970
).
171.
S. A.
Vanapalli
,
S. L.
Ceccio
, and
M. J.
Solomon
, “
Universal scaling for polymer chain scission in turbulence
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
16660
16665
(
2006
).
172.
S. A.
Vanapalli
,
M. T.
Islam
, and
M. J.
Solomon
, “
Scission-induced bounds on maximum polymer drag reduction in turbulent flow
,”
Phys. Fluids
17
,
095108
(
2005
).
173.
Y.
Farsiani
,
Z.
Saeed
, and
B. R.
Elbing
, “
Drag reduction performance of mechanically degraded dilute polyethylene oxide solutions
,”
J. Fluids Eng.
142
,
091201
(
2020
).
You do not currently have access to this content.