Water hammer or flow transients occur due to a sudden variation (over time) in flow properties that can lead to pipe system failure or damage. In addition, research on wave propagation and signal processing theories has developed different ways to detect anomalies in pipe systems. The two developments concerning pipe system safety and damage localization are of essential need in viscoelastic (VE) pipes, as their application in various industries is growing, given their favorable mechanical properties. With no literature review focusing on the topic, this paper aims to fill the current literary gap on transient waves in VE pipes. It highlights developments in the research field and elaborates on relevant water hammer concepts in VE pipes, including mathematical modeling, experimental setups, numerical solutions, parameter calibration, defect detection, and surge control. The comprehensive review concludes that a reliable transient wave model in viscoelastic pipes is yet to be fully confirmed despite the significant progress in the recent two decades.

1.
M. S.
Ghidaoui
, “
On the fundamental equations of water hammer
,”
Urban Water J.
1
(
2
),
71
83
(
2004
).
2.
M. S.
Ghidaoui
,
M.
Zhao
,
D. A.
McInnis
, and
D. H.
Axworthy
, “
A review of water hammer theory and practice
,”
Appl. Mech. Rev.
58
(
1–6
),
49
75
(
2005
).
3.
A.
Keramat
and
A.
Tijsseling
, “
Waterhammer with column separation, fluid–structure interaction and unsteady friction in a viscoelastic pipe
,”
CASA-Report No. 1243
(
2012
).
4.
A.
Keramat
,
A. S.
Tijsseling
,
Q.
Hou
, and
A.
Ahmadi
, “
Fluid–structure interaction with pipe-wall viscoelasticity during water hammer
,”
J. Fluids Struct.
28
,
434
455
(
2012
).
5.
N.
Joukowsky
, “
On the hydraulic hammer in water supply pipes
,”
Mem. Acad. Imp. Sci. St.-Petersbourg
9
(
5
),
1
71
(
1898
).
6.
M. H.
Chaudry
,
Applied Hydraulic Transients
(
Springer
,
New York
,
1987
).
7.
R.
Skalak
, “
An extension of the theory of water hammer
,”
Trans. Am. Soc. Mech. Eng.
78
(
1
),
105
115
(
1956
).
8.
S. M.
Kokoshvili
, “
Water hammer in a viscoelastic pipe
,”
Polym. Mech.
6
(
5
),
786
788
(
1973
).
9.
D.
Covas
,
I.
Stoianov
,
J. F.
Mano
,
H.
Ramos
,
N.
Graham
, and
C.
Maksimovic
, “
The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. II. Model development, calibration and verification
,”
J. Hydraul. Res.
43
(
1
),
56
70
(
2005
).
10.
G.
Pezzinga
and
P.
Scandura
, “
Unsteady flow in installations with polymeric additional pipe
,”
J. Hydraul. Eng.
121
(
11
),
802
811
(
1995
).
11.
G.
Pezzinga
,
B.
Brunone
, and
S.
Meniconi
, “
Relevance of pipe period on Kelvin–Voigt viscoelastic parameters: 1D and 2D inverse transient analysis
,”
J. Hydraul. Eng.
142
(
12
),
04016063
(
2016
).
12.
B.
Brunone
,
B. W.
Karney
,
M.
Mecarelli
, and
M.
Ferrante
, “
Velocity profiles and unsteady pipe friction in transient flow
,”
J. Water Resour. Plann. Manage.
126
(
4
),
236
244
(
2000
).
13.
C.
Landry
,
C.
Nicolet
,
A.
Bergant
,
A.
Müller
, and
F
Avellan
, “
Modeling of unsteady friction and viscoelastic damping in piping systems
,”
IOP Conf. Ser.: Earth Environ. Sci.
15
,
2030
(
2012
).
14.
S.
Meniconi
,
B.
Brunone
,
M.
Ferrante
, and
C.
Massari
, “
Transient hydrodynamics of in-line valves in viscoelastic pressurized pipes: Long-period analysis
,”
Exp. Fluids
53
(
1
),
265
275
(
2012
).
15.
G.
Pezzinga
,
B.
Brunone
,
D.
Cannizzaro
,
M.
Ferrante
,
S.
Meniconi
, and
A.
Berni
, “
Two-dimensional features of viscoelastic models of pipe transients
,”
J. Hydraul. Eng.
140
(
8
),
04014036
(
2014
).
16.
H. F.
Duan
,
P. J.
Lee
,
M. S.
Ghidaoui
, and
Y.-K.
Tung
, “
System response function–based leak detection in viscoelastic pipelines
,”
J. Hydraul. Eng.
138
(
2
),
143
153
(
2012
).
17.
A.
Keramat
and
A.
Haghighi
, “
Straightforward transient-based approach for the creep function determination in viscoelastic pipes
,”
J. Hydraul. Eng.
140
(
12
),
04014058
(
2014
).
18.
M.
Ferrante
and
C.
Capponi
, “
Viscoelastic models for the simulation of transients in polymeric pipes
,”
J. Hydraul. Res.
55
(
5
),
599
612
(
2017
).
19.
A.
Keramat
,
A. G.
Kolahi
, and
A.
Ahmadi
, “
Waterhammer modelling of viscoelastic pipes with a time-dependent Poisson's ratio
,”
J. Fluids Struct.
43
,
164
178
(
2013
).
20.
B.
Brunone
and
A.
Berni
, “
Wall shear stress in transient turbulent pipe flow by local velocity measurement
,”
J. Hydraul. Eng.
136
(
10
),
716
726
(
2010
).
21.
E. M.
Wahba
, “
On the two-dimensional characteristics of laminar fluid transients in viscoelastic pipes
,”
J. Fluids Struct.
68
,
113
124
(
2017
).
22.
G.
Pezzinga
, “
Quasi-2D model for unsteady flow in pipe networks
,”
J. Hydraul. Eng.
125
(
7
),
676
685
(
1999
).
23.
H. F.
Duan
,
M.
Ghidaoui
,
P. J.
Lee
, and
Y. K.
Tung
, “
Unsteady friction and visco-elasticity in pipe fluid transients
,”
J. Hydraul. Res.
48
(
3
),
354
362
(
2010
).
24.
H.
Shamloo
and
M.
Mousavifard
, “
Numerical simulation of turbulent pipe flow for water hammer
,”
J. Fluids Eng., Trans. ASME
137
(
11
),
111203
(
2015
).
25.
M.
Louati
and
M. S.
Ghidaoui
, “
High-frequency acoustic wave properties in a water-filled pipe. II. Range of propagation
,”
J. Hydraul. Eng.
55
(
5
),
632
646
(
2017
).
26.
M.
Louati
and
M. S.
Ghidaoui
, “
High-frequency acoustic wave properties in a water-filled pipe. I. Dispersion and multi-path behaviour
,”
J. Hydraul. Res.
55
(
5
),
613
631
(
2017
).
27.
Z.
Lai
,
M.
Louati
,
S.
Nasraoui
, and
M.
Ghidaoui
, “
Numerical investigation of high frequency wave-leak interaction in water-filled pipes
,”
J. Hydraul. Eng.
147
(
1
),
04020091
(
2021
).
28.
S.
Saemi
,
M.
Raisee
,
M. J.
Cervantes
, and
A.
Nourbakhsh
, “
Computation of two- and three-dimensional water hammer flows
,”
J. Hydraul. Res.
57
(
3
),
386
404
(
2019
).
29.
M. A.
Siba
,
W. M. F.
Mahmood
,
M. Z.
Nuawi
,
R.
Rasani
, and
M. H.
Nassir
, “
Modeling and applications of 3D flow in orifice plate at low turbulent Reynold numbers
,”
Int. J. Mech. Mechatron. Eng.
15
(
4
),
19
25
(
2015
).
30.
M. S.
Shah
,
J. B.
Joshi
,
A. S.
Kalsi
,
C. S. R.
Prasad
, and
D. S.
Shukla
, “
Analysis of flow through an orifice meter: CFD simulation
,”
Chem. Eng. Sci.
71
,
300
309
(
2012
).
31.
M.
Shehadeh
,
A.
Sharara
,
M.
Khamis
, and
H.
El-Gamal
, “
A study of pipeline leakage pattern using CFD
,”
Can. J. Mech. Sci. Eng.
3
(
3
),
98
101
(
2012
).
32.
M.
Morvarid
,
A.
Rezghi
,
A.
Riasi
, and
M.
Haghighi Yazdi
, “
3D numerical simulation of laminar water hammer considering pipe wall viscoelasticity and the arbitrary Lagrangian–Eulerian method
,”
World J. Eng.
15
(
2
),
298
305
(
2018
).
33.
R. B.
Carmona-Paredes
,
R.
Autrique
,
E.
Rodal-Canales
, and
D.
Paniagua-Lovera
, “
A new method to calculate hydraulic transients in HDPE pipes using the standard solid model to represent the HDPE viscoelastic behaviour
,”
IOP Conf. Ser.: Earth Environ. Sci.
240
,
052020
(
2019
).
34.
M.
Hino
,
M.
Sawamoto
, and
S.
Takasu
, “
Study on the transition to turbulence and frictional coefficient in an oscillatory pipe flow
,”
Trans. JSCE
9
,
282
284
(
1977
).
35.
H.
Brekke
,
A Stability Study on Hydro Power Plant Governing Including the Influence From a Quasi Nonlinear Damping of Oscillatory Flow and From The Turbine Characteristics
(
Kvaerner Brug
,
1984
), Vol.
1
.
36.
J. W.
Daily
,
W. L.
Hankey
, Jr.
,
R. W.
Olive
, and
J. M.
Jordaan
, Jr.
, “
Resistance coefficients for accelerated and decelerated flows through smooth tubes and orifices
,”
Trans. Am. Soc. Mech. Eng.
78
(
5
),
1071
1077
(
1956
).
37.
M. R.
Carstens
and
J. E.
Roller
, “
Boundary-shear stress in unsteady turbulent pipe flow
,”
J. Hydraul. Div.
85
(
2
),
67
81
(
1959
).
38.
E. B.
Shuy
, “
Wall shear stress in accelerating and decelerating turbulent pipe flows
,”
J. Hydraul. Res.
34
(
2
),
173
183
(
1996
).
39.
B.
Brunone
,
U. M.
Golia
, and
M.
Greco
, “
Some remarks on the momentum equation for fast transients
,” in
Proceedings of the International Meeting on Hydraulic Transients with Column Separation
(
Universidad Politecnica de Valencia
,
1991
), pp.
201
209
.
40.
B.
Brunone
,
U. M.
Golia
, and
M.
Greco
, “
The effects of two dimensionality on pipe transients modeling
,”
J. Hydraul. Eng.
121
(
12
),
906
912
(
1995
).
41.
B.
Brunone
and
U. M.
Golia
, “
Discussion of ‘Systematic evaluation of one-dimensional unsteady friction models in simple pipelines’ by J. P. Vitkovsky, A. Bergant, A. R. Simpson, and M. F. Lamber
,”
J. Hydraul. Eng.
134
(
2
),
282
284
(
2008
).
42.
A.
Bergant
,
A. R.
Simpson
, and
J.
Vítkovský
, “
Developments in unsteady pipe flow friction modelling
,”
J. Hydraul. Res.
39
(
3
),
249
257
(
2001
).
43.
A. E.
Vardy
and
K. L.
Hwang
, “
A characteristics model of transient friction in pipes
,”
J. Hydraul. Res.
29
(
5
),
669
684
(
1991
).
44.
D. J.
Wood
and
J. E.
Funk
, “
A boundary-layer theory for transient viscous losses in turbulent flow
,”
J. Basic Eng.
92
(
4
),
865
873
(
1970
).
45.
O
Bratland
, “
Frequency-dependent friction and radial kinetic energy variation in transient pipe flow
,” in
5th International Conference on Pressure Surges
(BHRA,
1986
), pp.
95
101
.
46.
R
Vennatrø
, “
Unsteady friction in pipeline
,” in
18th IAHR Symposium (Valencia)
(
1996
).
47.
B.
Svingen
, “
Rayleigh damping as an approximate model for transient hydraulic pipe friction
,” in
8th International Meeting of the IAHR Work Group on the Behaviour of Hydraulic Machinery under Steady Oscillatory Conditions
(
1997
).
48.
W.
Zielke
, “
Frequency-dependent friction in transient pipe flow
,”
J. Basic Eng.
90
(
1
),
109
115
(
1968
).
49.
A. E.
Vardy
and
K.-L.
Hwang
, “
A weighting function model of transient turbulent pipe friction
,”
J. Hydraul. Res.
31
(
4
),
533
548
(
1993
).
50.
A. E.
Vardy
and
J. M.
Brown
, “
Transient, turbulent, smooth pipe friction
,”
J. Hydraul. Res.
33
(
4
),
435
456
(
1995
).
51.
A. E.
Vardy
and
J. M. B.
Brown
, “
Transient turbulent friction in smooth pipe flows
,”
J. Sound Vib.
259
(
5
),
1011
1036
(
2003
).
52.
K.
Urbanowicz
,
Z.
Zarzycki
, and
S.
Kudźma
, “
Universal weighting function in modeling transient cavitating pipe flow
,”
J. Theor. Appl. Mech.
50
(4),
889
902
(
2012
).
53.
A. K.
Trikha
, “
An efficient method for simulating frequency-dependent friction in transient liquid flow
,”
J. Fluids Eng.
97
(
1
),
97
105
(
1975
).
54.
T.
Kagawa
,
I.
Lee
,
A.
Kitagawa
, and
T.
Takenaka
, “
High speed and accurate computing method of frequency-dependent friction in laminar pipe flow for characteristics method
,”
SME Int. J., Ser. B
49
(
447
),
2638
2644
(
1983
).
55.
A.
Vardy
and
J.
Brown
, “
Efficient approximation of unsteady friction weighting functions
,”
J. Hydraul. Eng.
130
(
11
),
1097
1107
(
2004
).
56.
J. P.
Vítkovský
,
M. L.
Stephens
,
A.
Bergant
, and
M. F.
Lambert
, “
Efficient and accurate calculation of Zielke and Vardy-Brown unsteady friction in pipe transients
,” in
Proceedings of the 9th International Conference on Pressure Surges
(BHR Group,
2004
), pp.
405
419
.
57.
Z.
Zarzycki
,
S.
Kudźma
, and
K.
Urbanowicz
, “
Improved method for simulating transients of turbulent pipe flow
,”
J. Theor. Appl. Mech.
49
(
1
),
135
158
(
2011
).
58.
K.
Urbanowicz
, “
Analytical expressions for effective weighting functions used during simulations of water hammer
,”
J. Theor. Appl. Mech.
55
(
3
),
1029
1040
(
2017
).
59.
B. W.
Karney
, “
Energy relations in transient closed-conduit flow
,”
J. Hydraul. Eng.
116
(
10
),
1180
1196
(
1990
).
60.
H. F.
Duan
,
M. S.
Ghidaoui
, and
Y. K.
Tung
, “
Energy analysis of viscoelasticity effect in pipe fluid transients
,”
J. Appl. Mech., Trans. ASME
77
(
4
),
044503
(
2010
).
61.
K.
Wu
,
Y.
Feng
,
Y.
Xu
,
H.
Liang
, and
G.
Liu
, “
Energy analysis of a quasi-two-dimensional friction model for simulation of transient flows in viscoelastic pipes
,”
Water
14
(
20
),
3258
(
2022
).
62.
P. J.
Lee
, “
Energy analysis for the illustration of inaccuracies in the linear modelling of pipe fluid transients
,”
J. Hydraul. Res.
51
(
2
),
133
144
(
2013
).
63.
B.
Pan
,
A.
Keramat
,
C.
Capponi
,
S.
Meniconi
,
B.
Brunone
, and
H.
Duan
, “
Transient energy analysis in water-filled viscoelastic pipelines
,”
J. Hydraul. Eng.
148
(
1
),
04021051
(
2022
).
64.
G.
Thibessard
, “
The simulation of water hammer on a numerical calculator
,” in
9th IAHR Convention, Dubrovnik, Yugoslavia
(IAHR,
1961
), pp.
881
890
.
65.
V. L.
Streeter
, “
Water hammer analysis
,”
J. Hydraul. Div.
95
(
6
),
1959
1972
(
1969
).
66.
T.
Tanahashi
and
E.
Kasahara
, “
Analysis of the waterhammer with water column separation
,”
Bull. JSME
12
(
50
),
206
214
(
1969
).
67.
E. B.
Wylie
and
V. L.
Streeter
, “
Column separation in horizontal pipelines
,” in
Proceedings of the Joint Symposium on Design and Operation of Fluid Machinery
(IAHR/ASME/ASCE,
1978
), pp.
3
13
.
68.
E. B
Wylie
,
V. L
Streeter
, and
L
Suo
,
Fluid Transients in Systems
(
Prentice Hall
,
1993
).
69.
A.
Bergant
,
A.
Simpson
, and
A.
Tijsseling
, “
Water hammer with column separation: A historical review
,”
J. Fluids Struct.
22
(
2
),
135
171
(
2006
).
70.
A.
Bergant
,
A. S.
Tijsseling
,
J. P.
Vítkovský
,
D. I. C.
Covas
,
A. R.
Simpson
, and
M. F.
Lambert
, “
Parameters affecting water-hammer wave attenuation, shape and timing. I. Mathematical tools
,”
J. Hydraul. Res.
46
(
3
),
373
381
(
2008
).
71.
A.
Keramat
,
A. S.
Tijsseling
, and
A.
Ahmadi
, “
Investigation of transient cavitating flow in viscoelastic pipes
,”
IOP Conf. Ser.: Earth Environ. Sci.
12
,
012081
(
2010
).
72.
A. K.
Soares
,
D. I. C.
Covas
, and
N. J. G.
Carrio
, “
Transient vaporous cavitation in viscoelastic pipes
,”
J. Hydraul. Res.
50
(
2
),
228
235
(
2012
).
73.
A. K
Soares
,
N
Martins
, and
D. I. C
Covas
, “
Investigation of transient vaporous cavitation: Experimental and numerical analyses
,”
Procedia Eng.
119
,
235
242
(
2015
).
74.
L.
Hadj-Taïeb
and
E.
Hadj-Taïeb
, “
Numerical simulation of transient flows in viscoelastic pipes with vapour cavitation
,”
Int. J. Modell. Simul.
29
(
2
),
206
213
(
2009
).
75.
A.
Bergant
and
A. R.
Simpson
, “
Pipeline column separation flow regimes
,”
J. Hydraul. Eng.
125
(
8
),
835
848
(
1999
).
76.
A. R
Simpson
,
Large Water Hammer Pressures Due to Column Separation in Sloping Pipes (Transients, Cavitation)
(
University of Michigan
,
1986
).
77.
R. J.
Brown
, “
Water-column separation at two pumping plants
,”
J. Basic Eng.
90
(
4
),
521
530
(
1968
).
78.
A. H.
De Vries
,
Cavitation Due to Waterhammer in Horizontal Pipelines with Several High Points
(Delft Hydraulics Laboratory ,
1973
).
79.
G. A.
Provoost
,
Investigation into Cavitation in a Prototype Pipeline Caused by Water Hammer
(BHRA,
1976
).
80.
G. A.
Provoost
and
E. B.
Wylie
, “
Discrete gas model to represent distributed free gas in liquids
,” in
5th International Symposium on Water Column Separation
(IAHR,
1982
), pp.
28
30
.
81.
E. B.
Wylie
, “
Simulation of vaporous and gaseous cavitation
,”
J. Fluids Eng.
106
,
307
311
(
1984
).
82.
C.
Kranenburg
,
Transient Cavitation in Pipelines
(Delft University of Technology,
1974
).
83.
K.
Urbanowicz
and
M.
Firkowski
, “
Extended bubble cavitation model to predict water hammer in viscoelastic pipelines
,”
J. Phys.: Conf. Ser.
1101
,
012046
(
2018
).
84.
K.
Urbanowicz
,
A.
Bergant
, and
H. F.
Duan
, “
Simulation of unsteady flow with cavitation in plastic pipes using the discrete bubble cavity and Adamkowski model
,”
IOP Conf. Ser.: Mater. Sci. Eng.
710
,
012013
(
2019
).
85.
A.
Bergant
and
A. R.
Simpson
, “
Interface model for transient cavitating flow in pipelines
,” in
Unsteady Flow and Fluid Transients
, edited by
R.
Bettess
and
J.
Watts
(A. A. Balkema,
1992
), pp.
333
342
.
86.
M.
Sadafi
,
A.
Riasi
, and
S. A.
Nourbakhsh
, “
Cavitating flow during water hammer using a generalized interface vaporous cavitation model
,”
J. Fluids Struct.
34
,
190
201
(
2012
).
87.
A. S.
Tijsseling
,
M. F.
Lambert
,
A. R.
Simpson
,
M. L.
Stephens
,
J. P.
Vítkovský
, and
A.
Bergant
, “
Skalak's extended theory of water hammer
,”
J. Sound Vib.
310
(
3
),
718
728
(
2008
).
88.
A. S.
Tijsseling
, “
Fluid–structure interaction in liquid-filled pipe systems: A review
,”
J. Fluids Struct.
10
(
2
),
109
146
(
1996
).
89.
Z. M.
Wang
and
S. K.
Eat Tan
, “
Coupled analysis of fluid transients and structural dynamic responses of a pipeline system
,”
J. Hydraul. Res.
35
(
1
),
119
131
(
1997
).
90.
L.
Zhang
,
S. A.
Tijsseling
, and
E. A.
Vardy
, “
FSI analysis of liquid-filled pipes
,”
J. Sound Vib.
224
(
1
),
69
99
(
1999
).
91.
D. C.
Wiggert
and
A. S.
Tijsseling
, “
Fluid transients and fluid–structure interaction in flexible liquid-filled piping
,”
Appl. Mech. Rev.
54
(
5
),
455
481
(
2001
).
92.
D.
Ferras
, “
Fluid–structure-interaction in pipe coils during hydraulic transients: Numerical and experimental analysis
,” in
E-Proceedings of the 36th IAHR World Congress
(IAHR,
2015
), Vol.
28
.
93.
D.
Ferràs
,
P. A.
Manso
,
A. J.
Schleiss
, and
D. I.
Covas
, “
Fluid–structure interaction in straight pipelines: Friction coupling mechanisms
,”
Comput. Struct.
175
,
74
90
(
2016
).
94.
J. S.
Walker
and
J. W.
Phillips
, “
Pulse propagation in fluid-filled tubes
,”
J. Appl. Mech.
44
(
1
),
31
35
(
1977
).
95.
R. A.
Valentin
,
J. W.
Phillips
, and
J. S.
Walker
,
Reflection and Transmission of Fluid Transients at an Elbow
(
Argonne National Laboratory
,
1979
).
96.
D. C.
Wiggert
,
F. J.
Hatfield
, and
S.
Stuckenbruck
, “
Analysis of liquid and structural transients in piping by the method of characteristics
,”
J. Fluids Eng.
109
(
2
),
161
165
(
1987
).
97.
S.
Henclik
, “
Numerical modeling of water hammer with fluid–structure interaction in a pipeline with viscoelastic supports
,”
J. Fluids Struct.
76
,
469
487
(
2018
).
98.
M. A.
Guidara
,
L.
Hadj Taieb
,
C.
Schmitt
,
E. H.
Taieb
, and
Z.
Azari
, “
Investigation of viscoelastic effects on transient flow in a relatively long PE100 pipe
,”
J. Fluids Struct.
80
,
370
389
(
2018
).
99.
H. K.
Aliabadi
,
A.
Ahmadi
, and
A.
Keramat
, “
Frequency response of water hammer with fluid–structure interaction in a viscoelastic pipe
,”
Mech. Syst. Signal Process.
144
,
106848
(
2020
).
100.
R.
Zanganeh
,
A.
Ahmadi
, and
A.
Keramat
, “
Fluid–structure interaction with viscoelastic supports during waterhammer in a pipeline
,”
J. Fluids Struct.
54
,
215
234
(
2015
).
101.
S.
Henclik
, “
A numerical approach to the standard model of water hammer with fluid–structure interaction
,”
J. Theor. Appl. Mech.
53
(
3
),
543
555
(
2015
).
102.
R.
Sadat Hosseini
,
A.
Ahmadi
, and
R.
Zanganeh
, “
Fluid–structure interaction during water hammer in a pipeline with different performance mechanisms of viscoelastic supports
,”
J. Sound Vib.
487
,
115527
(
2020
).
103.
D.
Covas
,
I.
Stoianov
,
J. F.
Mano
,
H.
Ramos
,
N.
Graham
, and
C.
Maksimovic
, “
The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. I. Experimental analysis and creep characterization
,”
J. Hydraul. Res.
42
(
5
),
517
532
(
2004
).
104.
H.
Ramos
and
D.
Covas
, “
Water pipe system response under dynamic effects
,”
J. Water Supply: Res. Technol.
55
(
4
),
269
282
(
2006
).
105.
X.
Wang
,
J.
Lin
,
A.
Keramat
,
M. S.
Ghidaoui
,
S.
Meniconi
, and
B.
Brunone
, “
Matched-field processing for leak localization in a viscoelastic pipe: An experimental study
,”
Mech. Syst. Signal Process.
124
,
459
478
(
2019
).
106.
A.
Keramat
,
M.
Fathi-Moghadam
,
R.
Zanganeh
,
M.
Rahmanshahi
,
A. S.
Tijsseling
, and
E
Jabbari
, “
Experimental investigation of transients-induced fluid–structure interaction in a pipeline with multiple-axial supports
,”
J. Fluids Struct.
93
,
102848
(
2020
).
107.
I.
Rezapour
,
M. S.
Bejestan
, and
B.
Aminnejad
, “
Case study of leak detection based on Gaussian function in experimental viscoelastic water pipeline
,”
Water Supply
21
(
7
),
3860
3874
(
2021
).
108.
H. A.
Warda
,
H. A.
Kandil
,
A. A.
Elmiligui
, and
E. M.
Wahba
, “
Modeling pressure transients in viscoelastic pipes
,”
Alexandria Eng. J.
40
(
6
),
797
809
(
2001
).
109.
C.
Apollonio
,
D. I. C.
Covas
,
G.
de Marinis
,
A.
Leopardi
, and
H. M.
Ramos
, “
Creep functions for transients in HDPE pipes
,”
Urban Water J.
11
(
2
),
160
166
(
2014
).
110.
N.
Carriço
,
A. K.
Soares
, and
D.
Covas
,
Calibration Methodology for Hydraulic Transient Solvers Incorporating Unsteady Friction and Pipe Wall Viscoelasticity
(Universidade Téchnica de Liboa,
2015
).
111.
D.
Ferràs
,
P. A.
Manso
,
A. J.
Schleiss
, and
D. I. C.
Covas
, “
Experimental distinction of damping mechanisms during hydraulic transients in pipe flow
,”
J. Fluids Struct.
66
,
424
446
(
2016
).
112.
H. A.
Warda
,
I. G.
Adam
, and
A. B.
Rashad
, “
Modeling pressure transient due to valve closure in leaking viscoelastic
,”
Alexandria Eng. J.
46
(
5
),
621
638
(
2007
).
113.
C.
Apollonio
,
G.
De Marinis
,
A.
Leopardi
, and
C.
Apollonio
, “
Water hammer in viscoelastic pipes. The effect of junctions-first results
,” in
Proceedings of the XXXIV IAHR Congress
(
2009
).
114.
D. J.
Wood
and
S. P.
Chao
, “
Effect of pipelines junctions on water hammer surges
,”
Transp. Eng. J.
97
(
3
),
441
457
(
1971
).
115.
S.
Evangelista
,
A.
Leopardi
,
R.
Pignatelli
, and
G.
de Marinis
, “
Hydraulic transients in viscoelastic branched pipelines
,”
J. Hydraul. Eng.
141
(
8
),
04015016
(
2015
).
116.
M.
Ferrante
and
C.
Capponi
, “
Calibration of viscoelastic parameters by means of transients in a branched water pipeline system
,”
Urban Water J.
15
(
1
),
9
15
(
2018
).
117.
M.
Ferrante
,
B.
Brunone
, and
S.
Meniconi
, “
Leak detection in branched pipe systems coupling wavelet analysis and a Lagrangian model
,”
J. Water Supply: Res. Technol.
58
(
2
),
95
106
(
2009
).
118.
S.
Meniconi
,
F.
Maietta
,
S.
Alvisi
,
C.
Capponi
,
V.
Marsili
,
M.
Franchini
, and
B.
Brunone
, “
A quick survey of the most vulnerable areas of a water distribution network due to transients generated in a service line: A Lagrangian model based on laboratory tests
,”
Water Resour. Res.
14
(
17
),
2741
, https://doi.org/10.3390/w14172741 (
2022
).
119.
S.
Meniconi
,
F.
Maietta
,
S.
Alvisi
,
C.
Capponi
,
V.
Marsili
,
M.
Franchini
, and
B.
Brunone
, “
Consumption change-induced transients in a water distribution network: Laboratory tests in a looped system
,”
Water Resour. Res.
58
(
10
),
e2021WR031343
, https://doi.org/10.1029/2021WR031343 (
2022
).
120.
S.
Meniconi
,
B.
Brunone
, and
M.
Ferrante
, “
Water-hammer pressure waves interaction at cross-section changes in series in viscoelastic pipes
,”
J. Fluids Struct.
33
,
44
58
(
2012
).
121.
C.
Massari
,
T. C. J.
Yeh
,
M.
Ferrante
,
B.
Brunone
, and
S.
Meniconi
, “
A stochastic tool for determining the presence of partial blockages in viscoelastic pipelines: First experimental results
,”
Procedia Eng.
70
,
1112
1120
(
2014
).
122.
M.
Fathi-Moghadam
and
S.
Kiani
, “
Simulation of transient flow in viscoelastic pipe networks
,”
J. Hydraul. Res.
58
(
3
),
531
540
(
2020
).
123.
D.
Covas
,
I.
Stoianov
,
H.
Ramos
,
N.
Graham
,
Č.
Maksimović
, and
D.
Butler
, “
Water hammer in pressurized polyethylene pipes: Conceptual model and experimental analysis
,”
Urban Water J.
1
(
2
),
177
197
(
2004
).
124.
A.
Bergant
,
Q.
Hou
,
A.
Keramat
, and
A. S.
Tijsseling
, “
Experimental and numerical analysis of water hammer in a large-scale PVC pipeline apparatus
,” in
4th International Meeting on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
(
2011
).
125.
A.
Bergant
,
Q.
Hou
,
A.
Keramat
, and
A. S.
Tijsseling
, “
Waterhammer tests in a long PVC pipeline with short steel end sections
,”
J. Hydraul. Struct.
1
(
1
),
24
36
(
2013
).
126.
M. L.
Stephens
,
M. F.
Lambert
,
A. R.
Simpson
, and
J. P.
Vitkovsky
, “
Calibrating the water-hammer response of a field pipe network by using a mechanical damping model
,”
J. Hydraul. Eng.
137
(
10
),
1225
1237
(
2011
).
127.
K.
Weinerowska-Bords
, “
Alternative approach to convolution term of viscoelasticity in equations of unsteady pipe flow
,”
J. Fluids Eng., Trans. ASME
137
(
5
),
054501
(
2015
).
128.
P.-G.
Franke
, “
Computation of unsteady pipe flow with respect to visco-elastic material properties
,”
J. Hydraul. Res.
21
(
5
),
345
353
(
1983
).
129.
M. B.
Abbott
,
An Introduction to the Method of Characteristics
(
American Elsevier
,
1966
).
130.
K.
Urbanowicz
and
M.
Firkowski
, “
Effect of creep compliance derivative in modeling water hammer in viscoelastic pipes
,” in
Pressure Surges
(
BHR Group
,
2018
), Vol.
13
, pp.
305
324
.
131.
G.
Bertaglia
,
M.
Ioriatti
,
A.
Valiani
,
M.
Dumbser
, and
V.
Caleffi
, “
Numerical methods for hydraulic transients in visco-elastic pipes
,”
J. Fluids Struct.
81
,
230
254
(
2018
).
132.
J.
Rahimi Firuz
,
S. R.
Sabagh Yazdi
, and
A.
Keramat
, “
Numerical methods of visco-elastic segments on water hammer pressures,”
Int. J. Numer. Methods Civil Eng.
4
(
4
),
49
57
(
2020
).
133.
A.
Lazhar
,
L.
Hadj-Taïeb
, and
E.
Hadj-Taïeb
, “
Two leaks detection in viscoelastic pipeline systems by means of transient
,”
J Loss Prev. Process Ind.
26
(
6
),
1341
1351
(
2013
).
134.
A. T.
Nile
,
B.
Djebedjian
, and
M. A.
El-Naggar
, “
Numerical and experimental study of water hammer in viscoelastic pipes with and without extended partial blockage
,”
Mansoura Eng. J.
43
(
3
),
1
13
(
2020
).
135.
D. J.
Wood
,
R. G.
Dorsch
, and
C.
Lightner
, “
Wave-plan analysis of unsteady flow in closed conduits
,”
J. Hydraul. Div.
92
(
2
),
83
110
(
1966
).
136.
H. A. A.
Abdel-Gawad
and
B.
Djebedjian
, “
Modeling water hammer in viscoelastic pipes using the wave characteristic method
,”
Appl. Math. Model.
83
,
322
341
(
2020
).
137.
A.
Seck
, “
Numerical solutions of hyperbolic systems of conservation laws combining unsteady friction and viscoelastic pipes
,”
J. Hydroinf.
23
(
1
),
103
116
(
2021
).
138.
A.
Seck
,
M.
Fuamba
, and
R.
Kahawita
, “
Finite-volume solutions to the water-hammer equations in conservation form incorporating dynamic friction using the Godunov scheme
,”
J. Hydraul. Eng.
143
(
9
),
04017029
(
2017
).
139.
W.
Ning
,
Z.
Ling
,
L.
Yunjie
, and
P.
Tianwen
, “
Finite volume model of water column separation and rejoining water hammer in viscoelastic pipes
,”
Chin. J. Theor. Appl. Mech.
54
(
7
),
1952
1960
(
2022
).
140.
P. J.
Lee
,
H. F.
Duan
,
M.
Ghidaoui
, and
B.
Karney
, “
Frequency domain analysis of pipe fluid transient behaviour
,”
J. Hydraul. Res.
51
(
6
),
609
622
(
2013
).
141.
D. I. C.
Covas
,
H. M.
Ramos
, and
A. B.
De Almeida
, “
Impulse response method for solving hydraulic transients in viscoelastic pipes
,” in
XXXI IAHR Congress
(
2005
).
142.
C.
Capponi
,
A. C.
Zecchin
,
M.
Ferrante
, and
J.
Gong
, “
Numerical study on accuracy of frequency-domain modelling of transients
,”
J. Hydraul. Res.
55
(
6
),
813
828
(
2017
).
143.
P. J.
Lee
,
M. F.
Lambert
,
A. R.
Simpson
,
J. P.
Vítkovský
, and
J.
Liggett
, “
Experimental verification of the frequency response method for pipeline leak detection
,”
J. Hydraul. Res.
44
(
5
),
693
707
(
2006
).
144.
A.
Keramat
,
B.
Karney
,
M. S.
Ghidaoui
, and
X.
Wang
, “
Transient-based leak detection in the frequency domain considering fluid–structure interaction and viscoelasticity
,”
Mech. Syst. Signal Process.
153
,
107500
(
2021
).
145.
B.
Pan
,
H. F.
Duan
,
S.
Meniconi
, and
B.
Brunone
, “
FRF-based transient wave analysis for the viscoelastic parameters identification and leak detection in water-filled plastic pipes
,”
Mech. Syst. Signal Process.
146
,
107056
(
2021
).
146.
H. F.
Duan
,
P. J.
Lee
,
M. S.
Ghidaoui
, and
Y. K.
Tung
, “
Extended blockage detection in pipelines by using the system frequency response analysis
,”
J. Water Resour. Plann. Manage.
138
(
1
),
55
62
(
2012
).
147.
B.
Pan
,
H. F.
Duan
,
S.
Meniconi
,
K.
Urbanowicz
,
T. C.
Che
, and
B.
Brunone
, “
Multistage frequency-domain transient-based method for the analysis of viscoelastic parameters of plastic pipes
,”
J. Hydraul. Eng.
146
(
3
),
04019068
(
2020
).
148.
K.
Weinerowska-Bords
, “
Viscoelastic model of waterhammer in single pipeline-problems and questions
,”
Arch. Hydro-Eng. Environ. Mech.
53
(
4
),
331
351
(
2006
).
149.
D.
Covas
and
H.
Ramos
, “
Case studies of leak detection and location in water pipe systems by inverse transient analysis
,”
J. Water Resour. Plann. Manage.
136
(
2
),
248
257
(
2010
).
150.
A. K.
Soares
,
D. I.
Covas
,
L.
Fernanda
, and
R.
Reis
, “
Analysis of PVC pipe-wall viscoelasticity during water hammer
,”
J. Hydraul. Eng.
134
(
9
),
1389
(
2008
).
151.
G.
Pezzinga
, “
Evaluation of time evolution of mechanical parameters of polymeric pipes by unsteady flow runs
,”
J. Hydraul. Eng.
140
(
12
),
04014057
(
2014
).
152.
M.
Ferrante
and
C.
Capponi
, “
Comparison of viscoelastic models with a different number of parameters for transient simulations
,”
J. Hydroinf.
20
(
1
),
1
17
(
2018
).
153.
J. J. O.
Cheshme
,
A.
Ahmadi
,
A.
Keramat
, and
A. S.
Arniazi
, “
Sensitivity of creep coefficients to the fundamental water hammer period in viscoelastic pipes
,”
Urban Water J.
18
(
3
),
183
194
(
2021
).
154.
M. J.
Potvin
, “
Comparison of time-domain finite element modelling of viscoelastic structures using an efficient fractional Voigt–Kelvin model or Prony series
,” Ph.D. thesis (
McGill University
,
2001
).
155.
J.
Gong
,
A. C.
Zecchin
,
M. F.
Lambert
, and
A. R.
Simpson
, “
Determination of the creep function of viscoelastic pipelines using system resonant frequencies with hydraulic transient analysis
,”
J. Hydraul. Eng.
142
(
9
),
04016023
(
2016
).
156.
H. F.
Duan
,
B.
Pan
,
M.
Wang
,
L.
Chen
,
F.
Zheng
, and
Y
Zhang
, “
State-of-the-art review on the transient flow modelling and utilization for urban water supply system (UWSS) management
,”
J. Water Supply: Res. Technol.
69
(
8
),
858
893
(
2020
).
157.
B.
Brunone
,
F.
Maietta
,
C.
Capponi
,
H. F.
Duan
, and
S.
Meniconi
, “
Detection of partial blockages in pressurized pipes by transient tests. A review of the physical experiments
,”
Fluids
8
(
1
),
19
(
2023
).
158.
S.
Meniconi
,
H. F.
Duan
,
P. J.
Lee
,
B.
Brunone
,
M. S.
Ghidaoui
, and
M.
Ferrante
, “
Experimental investigation of coupled frequency and time-domain transient test–based techniques for partial blockage detection in pipelines
,”
J. Hydraul. Eng.
139
(
10
),
1033
1040
(
2013
).
159.
S.
Meniconi
,
B.
Brunone
, and
M.
Ferrante
, “
In-line pipe device checking by short-period analysis of transient tests
,”
J. Hydraul. Eng.
137
(
7
),
713
722
(
2011
).
160.
C.
Massari
,
T. C. J.
Yeh
,
M.
Ferrante
,
B.
Brunone
, and
S.
Meniconi
, “
A stochastic approach for extended partial blockage detection in viscoelastic pipelines: Numerical and laboratory experiments
,”
J. Water Supply: Res. Technol.
64
(
5
),
583
595
(
2015
).
161.
P.
Kumar
and
P. K.
Mohapatra
, “
Partial blockage detection in pipelines by modified reconstructive method of characteristics technique
,”
J. Hydraul. Eng.
148
(
4
),
04022003
(
2022
).
162.
B.
Brunone
,
F.
Maietta
,
C.
Capponi
,
A.
Keramat
, and
S.
Meniconi
, “
A review of physical experiments for leak detection in water pipes through transient tests for addressing future research
,”
J. Hydraul. Res.
60
(
6
),
894
906
(
2022
).
163.
R. S.
Pudar
and
J. A.
Liggett
, “
Leaks in pipe networks
,”
J. Hydraul. Eng.
118
(
7
),
1031
1046
(
1992
).
164.
J. A.
Liggett
and
L. C.
Chen
, “
Inverse transient analysis in pipe networks
,”
J. Hydraul. Eng.
120
(
8
),
934
955
(
1994
).
165.
K.
Tang
,
B.
Karney
,
M.
Pendlebury
, and
F.
Zhang
, “
Inverse transient calibration of water distribution systems using genetic algorithms
,” in
Water Industry Systems: Modelling and Optimization Applications
(Research Studies Press,
1999
), Vol.
1
.
166.
Z. S.
Kapelan
,
D. A.
Savic
, and
G. A.
Walters
, “
A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks
,”
J. Hydraul. Res.
41
(
5
),
481
492
(
2003
).
167.
J.
Vitkovsky
,
J.
Liggett
,
A.
Simpson
, and
M.
Lambert
, “
Optimal measurement site locations for inverse transient analysis in pipe networks
,”
J. Water Resour. Plann. Manage.
129
(
6
),
480
492
(
2003
).
168.
A. F.
Colombo
,
P.
Lee
, and
B. W.
Karney
, “
A selective literature review of transient-based leak detection methods
,”
J. Hydro-Environ. Res.
2
(
4
),
212
227
(
2009
).
169.
A. K.
Soares
,
D. I.
Covas
, and
L. F. R.
Reis
, “
Leak detection by inverse transient analysis in an experimental PVC pipe system
,”
J. Hydroinf.
13
(
2
),
153
166
(
2011
).
170.
O.
Choura
,
C.
Capponi
,
S.
Meniconi
,
S.
Elaoud
, and
B.
Brunone
, “
A Nelder–Mead algorithm-based inverse transient analysis for leak detection and sizing in a single pipe
,”
Water Sci. Technol. Water Supply
21
(
4
),
1580
1593
(
2021
).
171.
M.
Mousavifard
,
F.
Poursmaeili
, and
H.
Shamloo
, “
Development of backward transient analysis in visco-elastic pressurized pipes
,”
J. Hydraul. Res.
60
(
3
),
423
433
(
2022
).
172.
X.
Wang
, “
Fast computation of inverse transient analysis for pipeline condition assessment via surrogate modeling with sparse sampling strategy
,”
Mech. Syst. Signal Process.
162
,
107995
(
2022
).
173.
X.
Wang
,
M.
Lambert
,
A.
Simpson
,
J.
Liggett
, and
J.
Vítkovsky
, “
Leak detection in pipelines using the damping of fluid transients
,”
J. Hydraul. Eng.
128
(
7
),
697
711
(
2002
).
174.
W.
Nixon
,
M. S.
Ghidaoui
, and
A. A.
Kolyshkin
, “
Range of validity of the transient damping leakage detection method
,”
J. Hydraul. Eng.
132
(
9
),
944
957
(
2006
).
175.
B.
Brunone
,
S.
Meniconi
,
C.
Capponi
, and
M.
Ferrante
, “
Leak-induced pressure decay during transients in viscoelastic pipes
,”
Procedia Eng.
119
,
243
252
(
2015
).
176.
B.
Brunone
,
S.
Meniconi
, and
C.
Capponi
, “
Numerical analysis of the transient pressure damping in a single polymeric pipe with a leak
,”
Urban Water J.
15
(
8
),
760
768
(
2018
).
177.
C.
Capponi
,
S.
Meniconi
,
P. J.
Lee
,
B.
Brunone
, and
M.
Cifrodelli
, “
Time-domain analysis of laboratory experiments on the transient pressure damping in a leaky polymeric pipe
,”
Water Resour. Manage.
34
(
2
),
501
514
(
2020
).
178.
A.
Triki
, “
Water-hammer control in pressurized-pipe flow using an in-line polymeric short-section
,”
Acta Mech
227
(
3
),
777
793
(
2016
).
179.
A. S.
Tijsseling
,
A.
Kruisbrink
, and
A.
Pereira da Silva
, “
The reduction of pressure wavespeeds by internal rectangular cubes
,” in
3rd ASME & JSME Joint Fluids Engineering Conference, Symposium S-290 Water Hammer
(
ASME
,
1999
).
180.
A.
Triki
, “
Water-hammer control in pressurized-pipe flow using a branched polymeric penstock
,”
J. Pipeline Syst. Eng. Pract.
8
(
4
),
04017024
(
2017
).
181.
A.
Triki
, “
Further investigation on water-hammer control inline strategy in water-supply systems
,”
J. Water Supply: Res. Technol.
67
(
1
),
30
43
(
2018
).
182.
A.
Triki
, “
Dual-technique-based inline design strategy for water-hammer control in pressurized pipe flow
,”
Acta Mech.
229
(
5
),
2019
2039
(
2018
).
183.
M.
Trabelsi
and
A.
Triki
, “
Dual control technique for mitigating water-hammer phenomenon in pressurized steel-piping systems
,”
Int. J. Pressure Vessels Piping
172
,
397
413
(
2019
).
184.
A.
Triki
and
M.
Trabelsi
, “
On the in-series and branching dual-technique-based water-hammer control strategy
,”
Urban Water J.
18
(
8
),
631
639
(
2021
).
185.
A.
Triki
and
M. A.
Chaker
, “
Compound technique-based inline design strategy for water-hammer control in steel pressurized-piping systems
,”
Int. J. Pressure Vessels Piping
169
,
188
203
(
2019
).
186.
M. A.
Chaker
and
A.
Triki
, “
Investigating the branching redesign strategy for surge control in pressurized steel piping systems
,”
Int. J. Pressure Vessels Piping
180
,
104044
(
2020
).
187.
W.
Ben Amira
and
A.
Triki
, “
Benchmarking the dual and compound techniques-based branching design strategy used for upgrading of pressurized hydraulic systems
,”
J. Pressure Vessel Technol., Trans. ASME
143
(
2
),
021701
(
2021
).
188.
M.
Kubrak
,
A.
Malesińska
,
A.
Kodura
,
K.
Urbanowicz
,
P.
Bury
, and
M.
Stosiak
, “
Water hammer control using additional branched HDPE pipe
,”
Energies
14
(
23
),
8008
(
2021
).
189.
J.
Javadi Orte Cheshme
,
A.
Ahmadi
, and
A.
Keramat
, “
Modeling of nonlinear viscoelastic creep of a polyethylene pipeline during water hammer
,”
Urban Water J.
19
(
4
),
336
347
(
2022
).
You do not currently have access to this content.