This review article presents a summary of the main categories of models developed for modeling cavitation, a multiphase phenomenon in which a fluid locally experiences phase change due to a drop in ambient pressure. The most common approaches to modeling cavitation along with the most common modifications to said approaches due to other effects of cavitating flows are identified and categorized. The application of said categorization is demonstrated through an analysis of selected cavitation models. For each of the models presented, the various assumptions and simplifications made by the authors of the model are discussed, and applications of the model to simulating various aspects of cavitating flow are also presented. The result of the analysis is demonstrated via a visualization of the categorizations of the highlighted models. Using the preceding discussion of the various cavitation models presented, the review concludes with an outlook toward future improvements in the modeling of cavitation.

1.
J.-P.
Franc
and
J.-M.
Michel
,
Fundamentals of Cavitation
, Fluid Mechanics and Its Applications No. 76 (
Kluwer Academic Publishers
,
Dordrecht
,
2010
).
2.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Cambridge University Press
,
2014
).
3.
A.
Adamkowski
,
A.
Henke
, and
M.
Lewandowski
, “
Resonance of torsional vibrations of centrifugal pump shafts due to cavitation erosion of pump impellers
,”
Eng. Failure Anal.
70
,
56
72
(
2016
).
4.
A. R.
Al-Obaidi
, “
Investigation of effect of pump rotational speed on performance and detection of cavitation within a centrifugal pump using vibration analysis
,”
Heliyon
5
,
e01910
(
2019
).
5.
D.
Wu
,
Y.
Ren
,
J.
Mou
,
Y.
Gu
, and
L.
Jiang
, “
Unsteady flow and structural behaviors of centrifugal pump under cavitation conditions
,”
Chin. J. Mech. Eng.
32
,
17
(
2019
).
6.
F.
Ye
,
G.
Bianchi
,
S.
Rane
,
S. A.
Tassou
, and
J.
Deng
, “
Numerical methodology and CFD simulations of a rotary vane energy recovery device for seawater reverse osmosis desalination systems
,”
Appl. Therm. Eng.
190
,
116788
(
2021
).
7.
L.
Sun
,
P.
Guo
, and
X.
Luo
, “
Numerical investigation on inter-blade cavitation vortex in a Franics turbine
,”
Renewable Energy
158
,
64
74
(
2020
).
8.
N.
Yilmaz
,
B.
Aktas
,
M.
Atlar
,
P. A.
Fitzsimmons
, and
M.
Felli
, “
An experimental and numerical investigation of propeller-rudder-hull interaction in the presence of tip vortex cavitation (TVC)
,”
Ocean Eng.
216
,
108024
(
2020
).
9.
D.
Wittekind
and
M.
Schuster
, “
Propeller cavitation noise and background noise in the sea
,”
Ocean Eng.
120
,
116
121
(
2016
).
10.
A.
Peters
,
U.
Lantermann
, and
O.
el Moctar
, “
Numerical prediction of cavitation erosion on a ship propeller in model- and full-scale
,”
Wear
408–409
,
1
12
(
2018
).
11.
Z-f
Zhu
and
S-l
Fang
, “
Numerical investigation of cavitation performance of ship propellers
,”
J. Hydrodyn.
24
,
347
353
(
2012
).
12.
T.
Melissaris
,
S.
Schenke
,
N.
Bulten
, and
T. J. C.
van Terwisga
, “
Cavitation erosion risk assessment on a full-scale steerable thruster
,”
Ocean Eng.
251
,
111019
(
2022
).
13.
Y.
Saito
,
R.
Takami
,
I.
Nakamori
, and
T.
Ikohagi
, “
Numerical analysis of unsteady behavior of cloud cavitation around a NACA0015 foil
,”
Comput. Mech.
40
,
85
96
(
2007
).
14.
S.
Watanabe
,
W.
Yamaoka
, and
A.
Furukawa
, “
Unsteady lift and drag characteristics of cavitating Clark Y-11.7% hydrofoil
,”
IOP Conf. Ser.: Earth Environ. Sci.
22
,
052009
(
2014
).
15.
N. S. M.
Yusof
,
B.
Babgi
,
Y.
Alghamdi
,
M.
Aksu
,
J.
Madhavan
, and
M.
Ashokkumar
, “
Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications
,”
Ultrason. Sonochem.
29
,
568
576
(
2016
).
16.
S. M. R.
Azam
,
H.
Ma
,
B.
Xu
,
S.
Devi
,
M. A. B.
Siddique
,
S. L.
Stanley
,
B.
Bhandari
, and
J.
Zhu
, “
Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables: A review
,”
Trends Food Sci. Technol.
97
,
417
432
(
2020
).
17.
B.
Kieser
,
R.
Philion
,
S.
Smith
, and
T.
McCartney
, “
The application of industrial scale ultrasonic cleaning to heat exchangers
,” in
Proceedings of International Conference on Heat Exchanger Fouling and Cleaning
(Heat Exchanger Fouling and Cleaning,
2011
), p.
3
.
18.
T. J.
O'Hern
, “
An experimental investigation of turbulent shear flow cavitation
,”
J. Fluid Mech.
215
,
365
391
(
1990
).
19.
P. A.
Brandner
,
G. J.
Walker
,
P. N.
Niekamp
, and
B.
Anderson
, “
An experimental investigation of cloud cavitation about a sphere
,”
J. Fluid Mech.
656
,
147
176
(
2010
).
20.
B.
Huang
,
Y.
Zhao
, and
G.
Wang
, “
Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows
,”
Comput. Fluids
92
,
113
124
(
2014
).
21.
A.
Behzadi
,
R. I.
Issa
, and
H.
Rusche
, “
Modelling of dispersed bubble and droplet flow at high phase fractions
,”
Chem. Eng. Sci.
59
,
759
770
(
2004
).
22.
M.
van Rijsbergen
,
E.-J.
Foeth
,
P.
Fitzsimmons
, and
A.
Boorsma
, “
High-speed video observations and acoustic-impact measurements on a NACA 0015 foil
,” in
Proceedings of the 8th International Symposium on Cavitation
(
Research Publishing Services
,
2012
), pp.
958
964
.
23.
M.
Dular
and
M.
Petkovšek
, “
On the mechanisms of cavitation erosion—Coupling high speed videos to damage patterns
,”
Exp. Therm. Fluid Sci.
68
,
359
370
(
2015
).
24.
M. S.
Mihatsch
,
S. J.
Schmidt
, and
N. A.
Adams
, “
Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra
,”
Phys. Fluids
27
,
103302
(
2015
).
25.
Y.
Utturkar
,
J.
Wu
,
G.
Wang
, and
W.
Shyy
, “
Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion
,”
Prog. Aerosp. Sci.
41
,
558
608
(
2005
).
26.
X.-W.
Luo
,
B.
Ji
, and
Y.
Tsujimoto
, “
A review of cavitation in hydraulic machinery
,”
J. Hydrodyn., Ser. B
28
,
335
358
(
2016
).
27.
W.
Li
and
Z.
Yu
, “
Cavitation models with thermodynamic effect for organic fluid cavitating flows in organic Rankine cycle systems: A review
,”
Therm. Sci. Eng. Prog.
26
,
101079
(
2021
).
28.
A.
Niedzwiedzka
,
G. H.
Schnerr
, and
W.
Sobieski
, “
Review of numerical models of cavitating flows with the use of the homogeneous approach
,”
Arch. Thermodyn.
37
,
71
(
2016
).
29.
G.
Wang
,
Q.
Wu
, and
B.
Huang
, “
Dynamics of cavitation–structure interaction
,”
Acta Mech. Sin.
33
,
685
708
(
2017
).
30.
L.
Rayleigh
, “
On the pressure developed in a liquid during the collapse of a spherical cavity
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
34
,
94
98
(
1917
).
31.
M. S.
Plesset
, “
The dynamics of cavitation bubbles
,”
J. Appl. Mech.
16
,
277
282
(
1949
).
32.
A.
Kubota
,
H.
Kato
, and
H.
Yamaguchi
, “
A new modelling of cavitating flows: A numerical study of unsteady cavitation on a hydrofoil section
,”
J. Fluid Mech.
240
,
59
96
(
1992
).
33.
F.
Denner
,
F.
Evrard
, and
B.
van Wachem
, “
Modeling acoustic cavitation using a pressure-based algorithm for polytropic fluids
,”
Fluids
5
,
69
(
2020
).
34.
E.
Goncalvès
and
B.
Charrière
, “
Modelling for isothermal cavitation with a four-equation model
,”
Int. J. Multiphase Flow
59
,
54
72
(
2014
).
35.
A.
Gnanaskandan
and
K.
Mahesh
, “
Large eddy simulation of the transition from sheet to cloud cavitation over a wedge
,”
Int. J. Multiphase Flow
83
,
86
102
(
2016
).
36.
B.
Budich
,
S. J.
Schmidt
, and
N. A.
Adams
, “
Numerical simulation and analysis of condensation shocks in cavitating flow
,”
J. Fluid Mech.
838
,
759
813
(
2018
).
37.
A.
Asnaghi
,
U.
Svennberg
, and
R. E.
Bensow
, “
Numerical and experimental analysis of cavitation inception behaviour for high-skewed low-noise propellers
,”
Appl. Ocean Res.
79
,
197
214
(
2018
).
38.
Y.
Ye
and
G.
Li
, “
Modeling of hydrodynamic cavitating flows considering the bubble-bubble interaction
,”
Int. J. Multiphase Flow
84
,
155
164
(
2016
).
39.
M.
Deshpande
,
J.
Feng
, and
C. L.
Merkle
, “
Numerical modeling of the thermodynamic effects of cavitation
,”
J. Fluids Eng.
119
,
420
427
(
1997
).
40.
E.
Giannadakis
,
M.
Gavaises
, and
C.
Arcoumanis
, “
Modelling of cavitation in diesel injector nozzles
,”
J. Fluid Mech.
616
,
153
193
(
2008
).
41.
D.
Fuster
and
T.
Colonius
, “
Modelling bubble clusters in compressible liquids
,”
J. Fluid Mech.
688
,
352
389
(
2011
).
42.
K.
Maeda
,
W.
Kreider
,
A.
Maxwell
,
B.
Cunitz
,
T.
Colonius
, and
M.
Bailey
, “
Modeling and experimental analysis of acoustic cavitation bubbles for Burst Wave Lithotripsy
,”
J. Phys.: Conf. Ser.
656
,
012027
(
2015
).
43.
C.-T.
Hsiao
,
J.
Ma
, and
G. L.
Chahine
, “
Multiscale two-phase flow modeling of sheet and cloud cavitation
,”
Int. J. Multiphase Flow
90
,
102
117
(
2017
).
44.
E.
Ghahramani
,
M. H.
Arabnejad
, and
R. E.
Bensow
, “
A comparative study between numerical methods in simulation of cavitating bubbles
,”
Int. J. Multiphase Flow
111
,
339
359
(
2019
).
45.
L.
Li
,
Z.
Wang
,
X.
Li
,
Y.
Wang
, and
Z.
Zhu
, “
Very large eddy simulation of cavitation from inception to sheet/cloud regimes by a multiscale model
,”
China Ocean Eng.
35
,
361
371
(
2021
).
46.
L.
Li
,
Z.
Wang
,
X.
Li
, and
Z.
Zhu
, “
Multiscale modeling of tip-leakage cavitating flows by a combined volume of fluid and discrete bubble model
,”
Phys. Fluids
33
,
062104
(
2021
).
47.
L.
Li
,
Y.
Huo
,
Z.
Wang
,
X.
Li
, and
Z.
Zhu
, “
Large eddy simulation of tip-leakage cavitating flow using a multiscale cavitation model and investigation on model parameters
,”
Phys. Fluids
33
,
092104
(
2021
).
48.
Z.
Wang
,
H.
Cheng
, and
B.
Ji
, “
Euler–Lagrange study of cavitating turbulent flow around a hydrofoil
,”
Phys. Fluids
33
,
112108
(
2021
).
49.
Z.
Wang
,
H.
Cheng
, and
B.
Ji
, “
Numerical prediction of cavitation erosion risk in an axisymmetric nozzle using a multi-scale approach
,”
Phys. Fluids
34
,
062112
(
2022
).
50.
Z.
Wang
,
L.
Li
,
X.
Li
,
Z.
Zhu
,
S.
Yang
, and
G.
Yang
, “
Investigation on multiscale features of cavitating flow in convergent-divergent test section using Eulerian–Lagrangian method
,”
Int. J. Mech. Sci.
238
,
107853
(
2023
).
51.
A.
Sikirica
,
Z.
Carija
,
I.
Lučin
,
L.
Grbčić
, and
L.
Kranjčević
, “
Cavitation model calibration using machine learning assisted workflow
,”
Mathematics
8
,
2107
(
2020
).
52.
Y.
Ventikos
and
G.
Tzabiras
, “
A numerical method for the simulation of steady and unsteady cavitating flows
,”
Comput. Fluids
29
,
63
88
(
2000
).
53.
R.
Banerjee
and
G.
Saritha
, “
Numerical study of cavitation and bubble growth using a high density ratio pseudo-potential lattice Boltzmann method
,”
ISME J. Thermofluids
3
,
40
(
2015
).
54.
R. F.
Kunz
,
D. A.
Boger
,
D. R.
Stinebring
,
T. S.
Chyczewski
,
J. W.
Lindau
,
H. J.
Gibeling
,
S.
Venkateswaran
, and
T. R.
Govindan
, “
A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction
,”
Comput. Fluids
29
,
849
875
(
2000
).
55.
I.
Senocak
and
W.
Shyy
, “
Interfacial dynamics-based modelling of turbulent cavitating flows. I. Model development and steady-state computations
,”
Int. J. Numer. Methods Fluids
44
,
975
995
(
2004
).
56.
L.
Liu
,
J.
Li
, and
Z.
Feng
, “
A numerical method for simulation of attached cavitation flows
,”
Int. J. Numer. Methods Fluids
52
,
639
658
(
2006
).
57.
G. H.
Schnerr
and
J.
Sauer
, “
Physical and numerical modeling of unsteady cavitation dynamics
,” in
4th International Conference on Multiphase Flow
(Elsevier,
2001
), p.
12
.
58.
A. K.
Singhal
,
M. M.
Athavale
,
H.
Li
, and
Y.
Jiang
, “
Mathematical basis and validation of the full cavitation model
,”
J. Fluids Eng.
124
,
617
624
(
2002
).
59.
P.
Zwart
,
A.
Gerber
, and
T.
Belamri
, “
A two-phase flow model for predicting cavitation dynamics
,” in
Fifth International Conference on Multiphase Flow
(International Conference on Multiphase Flow,
2004
).
60.
S.
Konstantinov
,
D.
Tselischev
, and
V.
Tselischev
, “
Numerical cavitation model for simulation of mass flow stabilization effect in ANSYS CFX
,”
Mod. Appl. Sci.
9
,
21
(
2014
).
61.
Y.
Saito
,
I.
Nakamori
, and
T.
Ikohagi
, “
Numerical analysis of unsteady vaporous cavitating flow around a hydrofoil
,” in
Fifth International Symposium on Cavitation,
Osaka
(
2003
).
62.
B.
Huang
and
G.
Wang
, “
A modified density based cavitation model for time dependent turbulent cavitating flow computations
,”
Chin. Sci. Bull.
56
,
1985
1992
(
2011
).
63.
S.
Shi
,
G.
Wang
, and
C.
Hu
, “
A Rayleigh–Plesset based transport model for cryogenic fluid cavitating flow computations
,”
Sci. China Phys., Mech. Astron.
57
,
764
773
(
2014
).
64.
J.
Li
and
P. M.
Carrica
, “
A population balance cavitation model
,”
Int. J. Multiphase Flow
138
,
103617
(
2021
).
65.
E.
Ghahramani
,
H.
Ström
, and
R. E.
Bensow
, “
Numerical simulation and analysis of multi-scale cavitating flows
,”
J. Fluid Mech.
922
,
A22
(
2021
).
66.
J.
Dumond
,
F.
Magagnato
, and
A.
Class
, “
Stochastic-field cavitation model
,”
Phys. Fluids
25
,
073302
(
2013
).
67.
Y.
Izumida
,
S.
Tamiya
,
H.
Kato
, and
H.
Yamaguchi
, “
The relationship between characteristics of partial cavitation and flow separation
,” in
Proceedings of 10th IAHR Symposium, Tokyo
(International Association for Hydro-Environment Engineering and Research,
1980
), pp.
169
181
.
68.
A.
Kubota
,
H.
Kato
,
H.
Yamaguchi
, and
M.
Maeda
, “
Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique
,”
J. Fluids Eng.
111
,
204
210
(
1989
).
69.
F.
Avellan
,
P.
Dupont
, and
I.
Ryhming
, “
Generation mechanism and dynamics of cavitation vortices downstream of a fixed leading edge cavity
,” in
17th Symposium on Naval Hydrodynamics
(
1988
).
70.
Y.
Shen
and
P. E.
Dimotakis
, “
The influence of surface cavitation on hydrodynamic forces
,” in
22nd American Towing Tank Conference
(
1989
).
71.
J.
Hord
, “
Cavitation in liquid cryogens. II. Hydrofoil
,”
Technical Report No. NASA-CR-2156
, (
National Bureau of Standards Boulder, National Aeronautics and Space Administration
,
1973
).
72.
A. P.
Keller
, “
Cavitation scale effects—Empirically found relations and the correlation of cavitation number and hydrodynamic coefficients
,” in Fourth International Symposium on Cavitation (
2001
).
73.
G. S.
Berntsen
,
M.
Kjeldsen
, and
R. E. A.
Arndt
, “
Numerical modeling of sheet and tip vortex cavitation with fluent 5
,” in
CAV 2001 Symposium
(
2001
).
74.
G.
Wang
,
I.
Senocak
,
W.
Shyy
,
T.
Ikohagi
, and
S.
Cao
, “
Dynamics of attached turbulent cavitating flows
,”
Prog. Aerosp. Sci.
37
,
551
581
(
2001
).
75.
E.-J.
Foeth
, “
The structure of three-dimensional sheet cavitation
,” Ph.D. thesis (Delft University of Technology,
2008
).
76.
B.
Stutz
and
J.-L.
Reboud
, “
Two-phase flow structure of sheet cavitation
,”
Phys. Fluids
9
,
3678
3686
(
1997
).
77.
B.
Stutz
and
J. L.
Reboud
, “
Experiments on unsteady cavitation
,”
Exp. Fluids
22
,
191
198
(
1997
).
78.
B.
Stutz
and
J.-L.
Reboud
, “
Measurements within unsteady cavitation
,”
Exp. Fluids
29
,
545
552
(
2000
).
79.
S.
Barre
,
J.
Rolland
,
G.
Boitel
,
E.
Goncalves
, and
R. F.
Patella
, “
Experiments and modeling of cavitating flows in venturi: Attached sheet cavitation
,”
Eur. J. Mech. B
28
,
444
464
(
2009
).
80.
R. F.
Patella
,
S.
Barre
, and
J.-L.
Reboud
, “
Experiments and modelling of cavitating flows in Venturi. II. Unsteady cavitation
,” in
CAV 2006 Symposium
(
2006
).
81.
H.
Rouse
and
J. S.
McNown
,
Cavitation and Pressure Distribution: Head Forms at Zero Angle of Yaw
(
State University of Iowa
,
1948
).
82.
L. R.
Sarósdy
and
A. J.
Acosta
, “
Note on observations of cavitation in different fluids
,”
J. Basic Eng.
83
,
399
400
(
1961
).
83.
E.
Ghahramani
,
S.
Jahangir
,
M.
Neuhauser
,
S.
Bourgeois
,
C.
Poelma
, and
R. E.
Bensow
, “
Experimental and numerical study of cavitating flow around a surface mounted semi-circular cylinder
,”
Int. J. Multiphase Flow
124
,
103191
(
2020
).
84.
F.
Reuter
and
S. A.
Kaiser
, “
High-speed film-thickness measurements between a collapsing cavitation bubble and a solid surface with total internal reflection shadowmetry
,”
Phys. Fluids
31
,
097108
(
2019
).
85.
F.
Bakir
,
R.
Rey
,
A. G.
Gerber
,
T.
Belamri
, and
B.
Hutchinson
, “
Numerical and experimental investigations of the cavitating behavior of an inducer
,”
Int. J. Rotating Mach.
10
,
15
25
(
2004
).
86.
J.
Ackeret
, “
Experimentelle und theoretische Untersuchungen über Hohlraumbildung (Kavitation) im Wasser
,”
Tech. Mech. Thermodyn.
1
,
63
72
(
1930
).
87.
E.
Winklhofer
,
E.
Kull
,
E.
Kelz
, and
A.
Morozov
, “
Comprehensive hydraulic and flow field documentation in model throttle experiments under cavitation conditions
,” in
International Conference on Liquid Atomization and Spray Systems
(
2001
).
88.
M.
Ida
, “
Multibubble cavitation inception
,”
Phys. Fluids
21
,
113302
(
2009
).
89.
A.
Kubota
,
H.
Kato
, and
H.
Yamaguchi
, “
A new numerical simulation method cavitating flow caused by large-scale vortices
,”
Theor. Appl. Mech.
36
,
93
100
(
1988
).
90.
A.
Kubota
,
H.
Kato
, and
H.
Yamaguchi
, “
Finite difference analysis of unsteady cavitation on a two-dimensional hydrofoil
,” in
5th International Conference on Numerical Ship Hydrodynamics
(
1989
).
91.
H.
Grandjean
,
N.
Jacques
, and
S.
Zaleski
, “
Shock propagation in liquids containing bubbly clusters: A continuum approach
,”
J. Fluid Mech.
701
,
304
332
(
2012
).
92.
UK Steam Tables in SI Units, 1970: Thermodynamic Properties of Water and Steam, Viscosity of Water and Steam, Thermal Conductivity of Water and Steam, Graphs for Boiler Feed Pump Calculations
, edited by
United Kingdom Committee on the Properties of Steam
(
United Kingdom Committee on the Properties of Steam by Edward Arnold
,
London
,
1970
).
93.
X.
Shan
and
H.
Chen
, “
Lattice Boltzmann model for simulating flows with multiple phases and components
,”
Phys. Rev. E
47
,
1815
1819
(
1993
).
94.
S.
Gong
and
P.
Cheng
, “
Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows
,”
Comput. Fluids
53
,
93
104
(
2012
).
95.
P. K.
Jain
,
A.
Tentner
, and
Rizwan-uddin
, “
A lattice Boltzmann framework to simulate boiling water reactor core hydrodynamics
,”
Comput. Math. Appl.
58
,
975
986
(
2009
).
96.
A.
Kuzmin
, “
Multiphase simulations with lattice Boltzmann scheme
,” Doctoral thesis (University of Calgary,
2010
).
97.
G.
Saritha
and
R.
Banerjee
, “
Bubble dynamics of a pressure-driven cavitating flow in a micro-scale channel using a high density pseudo-potential lattice Boltzmann method
,”
Heat Transfer Eng.
41
,
622
636
(
2020
).
98.
F.
Gilmore
,
The Growth or Collapse of a Spherical Bubble in a Viscous Compressible Liquid
(
California Institute of Technology
,
1952
).
99.
F.
Denner
and
S.
Schenke
, “
Modeling acoustic emissions and shock formation of cavitation bubbles
,”
Phys. Fluids
35
,
012114
(
2023
).
100.
C. L.
Merkle
,
J.
Feng
, and
P.
Buelow
, “
Computational modeling of the dynamics of sheet cavitation
,”
Third International Symposium on Cavitation
, Grenoble, France (
1998
).
101.
R.
Kunz
,
D.
Boger
,
T.
Chyczewski
,
D.
Stinebring
,
H.
Gibeling
, and
T.
Govindan
, “
Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies
,” in
Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference FEDSM'99
(
1999
).
102.
P. C.
Hohenberg
and
B. I.
Halperin
, “
Theory of dynamic critical phenomena
,”
Rev. Mod. Phys.
49
,
435
479
(
1977
).
103.
L.
Taylor
,
A.
Arabshahi
, and
D.
Whitfield
, “
Unsteady three-dimensional incompressible Navier–Stokes computations for a prolate spheroid undergoing time-dependent maneuvers
,” AIAA Paper No. 1995-313,
1995
.
104.
V. P.
Carey
,
Liquid Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
,
2nd ed.
(
Taylor & Francis
,
2007
).
105.
D. C.
Wilcox
,
Turbulence Modeling for CFD
(
DCW Industries
,
1994
).
106.
I.
Senocak
and
W.
Shyy
, “
Interfacial dynamics-based modelling of turbulent cavitating flows. II. Time-dependent computations
,”
Int. J. Numer. Methods Fluids
44
,
997
1016
(
2004
).
107.
Y.
Utturkar
,
S.
Thakur
, and
W.
Shyy
, “
Computational modeling of thermodynamic effects in cryogenic cavitation
,”
AIAA Paper No. 2005-1286
,
2005
.
108.
B.
Baldwin
and
H.
Lomax
, “
Thin-layer approximation and algebraic model for separated turbulentflows
,” AIAA Paper No. 1978-257,
1978
.
109.
J.
Li
,
L.
Liu
, and
Z.
Feng
, “
Numerical prediction of the hydrodynamic performance of a centrifugal pump in cavitating flows
,”
Commun. Numer. Methods Eng.
23
,
363
384
(
2006
).
110.
Y.
Moganaradjou
,
A. A.
Phukan
,
S.
Vengadesan
,
D.
Chatterjee
,
B.
Prejil Kumar
,
P.
Rijish Kumar
, and
P.
Unnikrishnan Nair
, “
The effect of secondary passages on cavitation and radial forces in a liquid propellant turbopump
,”
Proc. Inst. Mech. Eng., Part A
2023
,
095765092311717
.
111.
N. C.
Markatos
and
A. K.
Singhal
, “
Numerical analysis of one-dimensional, two-phase flow in a vertical cylindrical passage
,”
Adv. Eng. Software
4
,
99
106
(
1982
).
112.
J. O.
Hinze
,
Turbulence: An Introduction to Its Mechanism and Theory
,
2nd ed
. (
McGraw-Hill
,
New York
,
1975
).
113.
X.
Yuan
,
W.
Wang
,
X.
Zhu
, and
L.
Zhang
, “
Theoretical model of dynamic bulk modulus for aerated hydraulic fluid
,”
Chin. J. Mech. Eng.
35
,
121
(
2022
).
114.
O.
Coutier-Delgosha
,
R.
Fortes Patella
, and
J.-L.
Reboud
, “
Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation
,”
J. Fluids Eng.
125
,
38
(
2003
).
115.
H.
Zhou
,
G.
Cao
,
X.
Chen
,
Y.
Zhang
, and
Y.
Cang
, “
A study on the thermal properties of oil-film viscosity in squeeze film dampers
,”
Lubricants
11
,
163
(
2023
).
116.
S.
Konstantinov
,
V.
Tselischev
, and
D.
Tselischev
, “
Analytical calculation of hydraulic characteristics of jet-cavitation fluid mass flow stabilizers
,”
Procedia Eng.
176
,
107
117
(
2017
).
117.
Y.
Sone
and
H.
Sugimoto
, “
Strong evaporation from a plane condensed phase
,” in
Adiabatic Waves in Liquid-Vapor Systems
, International Union of Theoretical and Applied Mechanics, edited by
G. E. A.
Meier
and
P. A.
Thompson
(
Springer
,
Berlin, Heidelberg
,
1990
), pp.
293
304
.
118.
K.
Okuda
and
T.
Ikohagi
, “
Numerical simulation of collapsing behavior of bubble clouds
,”
Trans. Jpn. Soc. Mech. Eng. Ser. B
62
,
3792
3797
(
1996
).
119.
N.-E.
Mostafa
,
M.
Karim
, and
M. M. A.
Sarker
, “
Numerical prediction of unsteady behavior of cavitating flow on hydrofoils using bubble dynamics cavitation model
,”
J. Appl. Fluid Mech.
9
,
1829
1837
(
2016
).
120.
E.
Goncalvès
, “
Numerical study of expansion tube problems: Toward the simulation of cavitation
,”
Comput. Fluids
72
,
1
19
(
2013
).
121.
Y.
Dellanoy
and
J.
Kueny
, “
Two phase flow approach in unsteady cavitation modeling
,”
Am. Soc. Mech. Eng., Fluids Eng. Div.
98
,
153
(
1990
).
122.
E.
Goncalves
and
R. F.
Patella
, “
Numerical simulation of cavitating flows with homogeneous models
,”
Comput. Fluids
38
,
1682
1696
(
2009
).
123.
H.
Luo
,
J. D.
Baum
, and
R.
Löhner
, “
A fast, matrix-free implicit method for compressible flows on unstructured grids
,”
J. Comput. Phys.
146
,
664
690
(
1998
).
124.
P.
Spalart
and
S.
Allmaras
, “
A one-equation turbulence model for aerodynamic flows
,” AIAA Paper No. 1992-439,
1992
.
125.
E.
Goncalves
, “
Numerical simulation of cavitating flows with different cavitation and turbulence models
,” in
Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines: Turbopump and Inducer Cavitation, Experiments and Design
, CISM International Centre for Mechanical Sciences, edited by
L.
d'Agostino
and
M. V.
Salvetti
(
Springer International Publishing
,
Cham
,
2017
), pp.
179
233
.
126.
R. P.
Fedkiw
,
T.
Aslam
,
B.
Merriman
, and
S.
Osher
, “
A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method)
,”
J. Comput. Phys.
152
,
457
492
(
1999
).
127.
M.
Kang
,
R. P.
Fedkiw
, and
X.-D.
Liu
, “
A boundary condition capturing method for multiphase incompressible flow
,”
J. Sci. Comput.
15
,
323
360
(
2000
).
128.
J.
Ma
,
C.-T.
Hsiao
, and
G.
Chahine
, “
Euler–Lagrange simulations of bubble cloud dynamics near a wall
,”
J. Fluids Eng.
137
,
041301
(
2015
).
129.
M.
Sussman
,
A. S.
Almgren
,
J. B.
Bell
,
P.
Colella
,
L. H.
Howell
, and
M. L.
Welcome
, “
An adaptive level set approach for incompressible two-phase flows
,”
J. Comput. Phys.
148
,
81
124
(
1999
).
130.
C.-T.
Hsiao
,
G.
Chahine
, and
H.-L.
Liu
, “
Scaling effect on bubble dynamics in a tip vortex flow: Prediction of cavitation inception and noise
,” Technical Report No. 98007-1 (
Dynaflow, Inc.
,
2000
).
131.
C.-T.
Hsiao
,
G. L.
Chahine
, and
H.-L.
Liu
, “
Scaling effect on prediction of cavitation inception in a line vortex flow
,”
J. Fluids Eng.
125
,
53
60
(
2003
).
132.
W. L.
Haberman
and
R.
Morton
, “
An experimental investigation of the drag and shape of air bubbles rising in various liquids
,”
Technical Report No. 802
(
The David W. Taylor Model Basin
,
1953
).
133.
P. G.
Saffman
, “
The lift on a small sphere in a slow shear flow
,”
J. Fluid Mech.
22
,
385
400
(
1965
).
134.
J.
Ma
,
A. A.
Oberai
,
M. C.
Hyman
,
D. A.
Drew
, and
R. T.
Lahey
, “
Two-fluid modeling of bubbly flows around surface ships using a phenomenological subgrid air entrainment model
,”
Comput. Fluids
52
,
50
57
(
2011
).
135.
C.-T.
Hsiao
,
X.
Wu
,
J.
ma
, and
G.
Chahine
, “
Numerical and experimental study of bubble entrainment due to a horizontal plunging jet
,”
Int. Shipbuild. Prog.
60
,
435
469
(
2013
).
136.
H.
Medwin
, “
Counting bubbles acoustically: A review
,”
Ultrasonics
15
,
7
13
(
1977
).
137.
M.
Billet
,
Cavitation Nuclei Measurements: A Review
(
American Society of Mechanical Engineers
,
1985
).
138.
R.
Franklin
, “
Note on the radius distribution function for microbubbles of gas in water
,”
Am. Soc. Mech. Eng., Fluids Eng. Div.
135
,
77
85
(
1992
).
139.
X.-J.
Wu
and
G. L.
Chahine
, “
Development of an acoustic instrument for bubble size distribution measurement
,”
J. Hydrodyn., Ser. B
22
,
325
336
(
2010
).
140.
J.
Ma
,
C.-T.
Hsiao
, and
G. L.
Chahine
, “
A physics based multiscale modeling of cavitating flows
,”
Comput. Fluids
145
,
68
84
(
2017
).
141.
M.
Strelets
, “
Detached eddy simulation of massively separated flows
,” AIAA Paper No. 2001-879,
2001
.
142.
M. J.
Prince
and
H. W.
Blanch
, “
Bubble coalescence and break-up in air-sparged bubble columns
,”
AIChE J.
36
,
1485
1499
(
1990
).
143.
F.
Lehr
,
M.
Millies
, and
D.
Mewes
, “
Bubble-size distribution and flow fields in bubble columns
,”
AIChE J.
48
,
2426
2443
(
2002
).
144.
C. E.
Brennen
, “
Fission of collapsing cavitation bubbles
,”
J. Fluid Mech.
472
,
153
166
(
2002
).
145.
A. M.
Castro
,
J.
Li
, and
P. M.
Carrica
, “
A mechanistic model of bubble entrainment in turbulent free surface flows
,”
Int. J. Multiphase Flow
86
,
35
55
(
2016
).
146.
J.
Li
,
J. E.
Martin
, and
P. M.
Carrica
, “
Large-scale simulation of ship bubbly wake during a maneuver in stratified flow
,”
Ocean Eng.
173
,
643
658
(
2019
).
147.
A.
Asnaghi
,
A.
Feymark
, and
R. E.
Bensow
, “
Improvement of cavitation mass transfer modeling based on local flow properties
,”
Int. J. Multiphase Flow
93
,
142
157
(
2017
).
148.
J.
Li
and
P. M.
Carrica
, “
Numerical study of the cavitating flow over backward facing step with a polydisperse two-phase flow model
,”
Phys. Fluids
35
,
063313
(
2023
).
149.
E.
Ghahramani
,
M. H.
Arabnejad
, and
R. E.
Bensow
, “
Realizability improvements to a hybrid mixture-bubble model for simulation of cavitating flows
,”
Comput. Fluids
174
,
135
143
(
2018
).
150.
S.
Schenke
and
T.
Terwisga
, “
Simulating compressibility in cavitating flows with an incompressible mass transfer flow solver
,” in
Proceedings of the 5th International Symposium on Marine Propulsion
(
2017
).
151.
A. A.
Amsden
,
P. J.
O'Rourke
, and
T. D.
Butler
, “
KIVA-II: A computer program for chemically reactive flows with sprays
,”
Technical Report No. LA-11560-MS
(
Los Alamos National Laboratory
,
1989
).
152.
R.
Mei
, “
An approximate expression for the shear lift force on a spherical particle at finite Reynolds number
,”
Int. J. Multiphase Flow
18
,
145
147
(
1992
).
153.
M.
Breuer
and
M.
Alletto
, “
Efficient simulation of particle-laden turbulent flows with high mass loadings using LES
,”
Int. J. Heat Fluid Flow
35
,
2
12
(
2012
).
154.
A.
Vallier
, “
Simulations of cavitation—from the large vapour structures to the small bubble dynamics
,” Ph.D. thesis (Lund University,
2013
).
155.
A. M.
Kamp
,
A. K.
Chesters
,
C.
Colin
, and
J.
Fabre
, “
Bubble coalescence in turbulent flows: A mechanistic model for turbulence-induced coalescence applied to microgravity bubbly pipe flow
,”
Int. J. Multiphase Flow
27
,
1363
1396
(
2001
).
156.
Y. M.
Lau
,
W.
Bai
,
N. G.
Deen
, and
J. A. M.
Kuipers
, “
Numerical study of bubble break-up in bubbly flows using a deterministic Euler–Lagrange framework
,”
Chem. Eng. Sci.
108
,
9
22
(
2014
).
157.
F.
Hoppe
and
M.
Breuer
, “
A deterministic breakup model for Euler–Lagrange simulations of turbulent microbubble-laden flows
,”
Int. J. Multiphase Flow
123
,
103119
(
2020
).
158.
P. A.
Brandner
,
J. A.
Venning
, and
B. W.
Pearce
, “
Nucleation effects on cavitation about a sphere
,”
J. Fluid Mech.
946
,
A1
(
2022
).
159.
L.
Valiño
, “
A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow
,”
Flow, Turbul. Combust.
60
,
157
172
(
1998
).
160.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences
(
Springer-Verlag
,
1983
).
161.
B.
Chen
and
M.
Oevermann
, “
An Eulerian stochastic field cavitation model coupled to a pressure based solver
,”
Comput. Fluids
162
,
1
10
(
2018
).
162.
M.
Altimira
and
L.
Fuchs
, “
Numerical investigation of throttle flow under cavitating conditions
,”
Int. J. Multiphase Flow
75
,
124
136
(
2015
).
163.
E. A.
Brujan
and
P. R.
Williams
, “
Cavitation phenomena in non-Newtonian liquids
,”
Chem. Eng. Res. Des.
84
,
293
299
(
2006
).
164.
E.-A.
Brujan
, “
Cavitation bubble dynamics in non-Newtonian fluids
,”
Polym. Eng. Sci.
49
,
419
431
(
2009
).
165.
E.
Brujan
,
Cavitation in Non-Newtonian Fluids: With Biomedical and Bioengineering Applications
(
Springer
,
Berlin, Heidelberg
,
2011
).
166.
Y.
Zhou
and
L.
Peng
, “
On the time-fractional Navier–Stokes equations
,”
Comput. Math. Appl.
73
,
874
891
(
2017
).
167.
H.
Ouyang
,
Z.
Zhu
,
K.
Chen
,
B.
Tian
,
B.
Huang
, and
J.
Hao
, “
Reconstruction of hydrofoil cavitation flow based on the chain-style physics-informed neural network
,”
Eng. Appl. Artif. Intell.
119
,
105724
(
2023
).
168.
M.
Xu
,
H.
Cheng
, and
B.
Ji
, “
RANS simulation of unsteady cavitation around a Clark-Y hydrofoil with the assistance of machine learning
,”
Ocean Eng.
231
,
109058
(
2021
).
169.
Y.
Sha
,
J.
Faber
,
S.
Gou
,
B.
Liu
,
W.
Li
,
S.
Schramm
,
H.
Stoecker
,
T.
Steckenreiter
,
D.
Vnucec
,
N.
Wetzstein
,
A.
Widl
, and
K.
Zhou
, “
A multi-task learning for cavitation detection and cavitation intensity recognition of valve acoustic signals
,”
Eng. Appl. Artif. Intell.
113
,
104904
(
2022
).
You do not currently have access to this content.