We study theoretically internal flows in a small oblate droplet suspended on the circular frame. Marangoni convection arises due to a vertical temperature gradient across the drop and is driven by the surface tension variations at the free drop interface. Using the analytical basis for the solutions of Stokes equation in coordinates of oblate spheroid, we have derived the linearly independent stationary solutions for Marangoni convection in terms of Stokes stream functions. The numerical simulations of the thermocapillary motion in the drops are used to study the onset of the stationary regime. Both analytical and numerical calculations predict the axially symmetric circulatory convection motion in the drop, the dynamics of which is determined by the magnitude of the temperature gradient across the drop. The analytical solutions for the critical temperature distribution and velocity fields are obtained for the large temperature gradients across the oblate drop. These solutions reveal the lateral separation of the critical and stationary motions within the drops. The critical vortices are localized near the central part of a drop, while the intensive stationary flow is located closer to its butt end. A crossover to the limit of the plane film is studied within the formalism of the stream functions by reducing the droplet ellipticity ratio to zero value. The initial stationary regime for the strongly oblate drops becomes unstable relative to the many-vortex perturbations in analogy with the plane fluid films with free boundaries.

1.
E. L.
Koschmieder
and
D. W.
Switzer
, “
The wavenumbers of supercritical surface-tension-driven Bénard convection
,”
J. Fluid Mech.
240
,
533
(
1992
).
2.
S. J.
VanHook
,
M. F.
Schatz
,
J. B.
Swift
,
W. D.
McCormick
, and
H. L.
Swinney
, “
Long-wavelength surface-tension-driven Bénard convection: Experiment and theory
,”
J. Fluid Mech.
345
,
45
(
1997
).
3.
L. Yu.
Barash
,
T. P.
Bigioni
,
V. M.
Vinokur
, and
L. N.
Shchur
, “
Evaporation and fluid dynamics of a sessile drop of capillary size
,”
Phys. Rev. E
79
,
046301
(
2009
).
4.
J. L.
Zhu
,
W. Y.
Shi
, and
L.
Feng
, “
Bénard–Marangoni instability in sessile droplet evaporating at constant contact angle mode on heated substrate
,”
Int. J. Heat Mass Transfer
134
,
784
(
2019
).
5.
W.-Y.
Shi
,
K.-Y.
Tang
,
J.-N.
Ma
,
Y.-W.
Jia
,
H.-M.
Li
, and
L.
Feng
, “
Marangoni convection instability in a sessile droplet with low volatility on heated substrate
,”
Int. J. Thermal Sci.
117
,
274
(
2017
).
6.
M. A.
Kazemi
,
S.
Saber
,
J. A. W.
Elliott
, and
D. S.
Nobes
, “
Marangoni convection in an evaporating water droplet
,”
Int. J. Heat Mass Transfer
181
,
122042
(
2021
).
7.
I. V.
Makeev
,
I. Yu.
Popov
, and
R. Sh.
Abiev
, “
Analytical solution of Taylor circulation in a prolate ellipsoid droplet in the frame of 2D Stokes equations
,”
Chem. Eng. Sci.
207
,
145
(
2019
).
8.
R. T.
van Gaalen
,
H. M. A.
Wijshoff
,
J. G. M.
Kuerten
, and
C.
Diddens
, “
Competition between thermal and surfactant-induced Marangoni flow in evaporating sessile droplets
,”
J. Colloid Interface Sci.
622
,
892
(
2022
).
9.
D.
Wang
and
P.
Cheng
, “
Nanoparticles deposition patterns in evaporating nanofluid droplets on smooth heated hydrophilic substrates: A 2D immersed boundary-lattice Boltzmann simulation
,”
Int. J. Heat Mass Transfer
168
,
120868
(
2021
).
10.
T.-S.
Wang
,
W.-Y.
Shi
, and
F.
Duan
, “
Marangoni convection instabilities in an evaporating droplet on a non-isothermal substrate
,”
Int. J. Heat Mass Transfer
195
,
123140
(
2022
).
11.
T.-S.
Wang
and
W.-Y.
Shi
, “
Marangoni convection instability in an evaporating droplet deposited on volatile liquid layer
,”
Int. J. Heat Mass Transfer
171
,
121055
(
2021
).
12.
H.
Bénard
, “
Les tourbillons cellularies dans une nappe liquid
,”
Rev. Gen. Sci. Pures Appl.
11
,
1261
(
1900
).
13.
E. L.
Koschmieder
, “
Bénard convection
,”
Adv. Chem. Phys.
26
,
177
(
1974
).
14.
S. H.
Davis
, “
Thermocapillary instabilities
,”
Ann. Rev. Fluid Mech.
19
,
403
(
1987
).
15.
V. G.
Levich
,
Physicochemical Hydrodynamics
(
Prentice-Hall
,
London
,
1962
).
16.
G. Z.
Gershuni
and
E. M.
Zhukhovitskii
,
Convective Stability of an Incompressible Fluid
(
Nauka
,
Moscow
,
1972
).
17.
A. V.
Getling
, “
Formation of spatial structures in Rayleigh–Bénard convection
,”
Sov. Phys. Usp.
34
,
737
(
1991
).
18.
T.
Gambaryan-Roisman
, “
Modulation of Marangoni convection in liquid films
,”
Adv. Colloid Interface Sci.
222
,
319
(
2015
).
19.
K.
Nakamura
,
H. N.
Yoshikawa
,
Y.
Tasaka
, and
Y.
Murai
, “
Linear stability analysis of bubble-induced convection in a horizontal liquid layer
,”
Phys. Rev. E
102
,
053102
(
2020
).
20.
J.
Yoshioka
,
T.
Sakikawa
,
Y.
Ito
, and
K.
Fukao
, “
Marangoni convection driven by temperature gradient near an isotropic-nematic phase transition point
,”
Phys. Rev. E
105
,
L012701
(
2022
).
21.
M.
Bestehorn
,
A.
Pototsky
, and
U.
Thiele
, “
3D Large scale Marangoni convection in liquid films
,”
Eur. Phys. J. B
33
,
457
467
(
2003
).
22.
G.
Wang
, “
Finite element simulations of free surface flows with surface tension in complex geometries
,”
ASME J. Fluids Eng.
124
,
584
(
2002
).
23.
A.
Alexeev
,
T.
Gambaryan-Roisman
, and
P.
Stephan
, “
Marangoni convection and heat transfer in thin liquid films on heated walls with topography: Experiments and numerical study
,”
Phys. Fluids
17
,
062106
(
2005
).
24.
K. S.
Kolegov
and
L.
Barash
, “
Applying droplets and films in evaporative lithography
,”
Adv. Colloid Interface Sci.
285
,
102271
(
2020
).
25.
M. A.
Al-Muzaiqer
,
K. S.
Kolegov
,
N. A.
Ivanova
, and
V. M.
Fliagin
, “
Nonuniform heating of a substrate in evaporative lithography
,”
Phys. Fluids
33
,
092101
(
2021
).
26.
L. A.
Davalos-Orozco
, “
Nonlinear sideband thermocapillary instability of a thin film coating the inside of a thick walled cylinder with finite thermal conductivity in the absence of gravity
,”
Microgravity Sci. Technol.
32
,
105
(
2020
).
27.
D. E.
Melnikov
,
V.
Shevtsova
,
T.
Yano
, and
K.
Nishino
, “
Modeling of the experiments on the Marangoni convection in liquid bridges in weightlessness for a wide range of aspect ratios
,”
Int. J. Heat Mass Transfer
87
,
119
(
2015
).
28.
T.
Yano
,
K.
Nishino
,
S.
Matsumoto
et al, “
Report on microgravity experiments of dynamic surface deformation effects on Marangoni instability in high-Prandtl-number liquid bridges
,”
Microgravity Sci. Technol.
30
,
599
(
2018
).
29.
H.
Schüring
and
R.
Stannarius
, “
Isotropic droplets in thin free standing smectic films
,”
Langmuir
18
,
9735
(
2002
).
30.
C.
Bohley
and
R.
Stannarius
, “
Inclusions in free standing smectic liquid crystal films
,”
Soft Matter
4
,
683
(
2008
).
31.
E. S.
Pikina
,
B. I.
Ostrovskii
, and
S. A.
Pikin
, “
Coalescence of isotropic droplets in overheated free standing smectic films
,”
Soft Matter
16
,
4591
(
2020
).
32.
D.
Tam
,
V.
von Arnim
,
G. H.
McKinley
, and
A. E.
Hosoi
, “
Marangoni convection in droplets on superhydrophobic surfaces
,”
J. Fluid Mech.
624
,
101
(
2009
).
33.
E. S.
Pikina
,
M. A.
Shishkin
,
K. S.
Kolegov
,
B. I.
Ostrovskii
, and
S. A.
Pikin
, “
Circulating Marangoni flows within droplets in smectic films
,”
Phys. Rev. E
106
,
055105
(
2022
).
34.
G. P.
Sasmal
and
J. I.
Hochstei
, “
Marangoni convection with a curved and deforming free surface in a cavity
,”
ASME J. Fluids Eng.
116
,
577
(
1994
).
35.
H.
Hu
and
R. G.
Larson
, “
Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet
,”
Langmuir
21
,
3972
(
2005
).
36.
H.
Hu
and
R. G.
Larson
, “
Marangoni effect reverses coffee-ring depositions
,”
J. Phys. Chem. B
110
,
7090
(
2006
).
37.
F.
Girard
,
M.
Antoni
,
S.
Faure
, and
A.
Steinchen
, “
Evaporation and Marangoni driven convection in small heated water droplets
,”
Langmuir
22
,
11085
(
2006
).
38.
W. D.
Ristenpart
,
P. G.
Kim
,
C.
Domingues
,
J.
Wan
, and
H. A.
Stone
, “
Influence of substrate conductivity on circulation reversal in evaporating drops
,”
Phys. Rev. Lett.
99
,
234502
(
2007
).
39.
Y.
Kita
,
A.
Askounis
,
M.
Kohno
,
Y.
Takata
,
J.
Kim
, and
K.
Sefiane
, “
Induction of Marangoni convection in pure water drops
,”
Appl. Phys. Lett.
109
,
171602
(
2016
).
40.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics
(
Noordhoff International Publishing
,
Leyden
,
1973
).
41.
N. N.
Lebedev
,
Special Functions and Their Applications
(
Prentice-Hall
,
Englewood Cliffs
,
1965
).
42.
N. N.
Lebedev
,
I. P.
Skalskaya
, and
Y. S.
Uflyand
,
Problems of Mathematical Physics
(
Prentice-Hall
,
Englewood Cliffs
,
1965
).
43.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Butterworth-Heinemann
,
Oxford
,
1987
).
44.
G.
Falkovich
,
Fluid Mechanics
,
2nd ed.
(
Cambridge University Press
,
2018
).
45.
The stream function ψ determines the instant fluid flow rate divided by 2 π (the half of the total spatial angle).40 To represent ψ in dimensionless form it is scaled by χ c 2 / H, and as such is used consistently throughout the paper.
46.
Z.
Liu
,
Multiphysics in Porous Materials
(
Springer International Publishing
,
2018
).
47.
M.
Kumar
and
R.
Bhardwaj
, “
A combined computational and experimental investigation on evaporation of a sessile water droplet on a heated hydrophilic substrate
,”
Int. J. Heat Mass Transfer
122
,
1223
(
2018
).
48.
E. I.
Kats
and
V. V.
Lebedev
,
Fluctuational Effects in the Dynamics of Liquid Crystals
(
Springer
,
Berlin
,
1993
).
49.
F.
Tisseur
and
K.
Meerbergen
, “
The quadratic eigenvalue problem
,”
SIAM Rev.
43
,
235
(
2001
).
50.
As was indicated in Ref. 33, there is a certain complication in solution of Eq. (44): The obtained critical Ma are complex numbers, containing real and imaginary parts, due to the irrationality in the left part of Eq. (44). It was shown that the image part of Mac can be made less than 10 3 upon an increase in the number of the basic functions Nr in expansion of a general stream function over ψi (the image part of Mac turns to zero when N r ). Using such a solution property the critical Mac values were determined.
51.
E. S.
Pikina
,
B. I.
Ostrovskii
, and
S. A.
Pikin
, “
Benard–Marangoni convection within isotropic droplets in overheated free standing smectic films
,”
Eur. Phys. J. E
44
,
81
(
2021
).
52.
J. R. A.
Pearson
, “
On convection cells induced by surface tension
,”
J. Fluid Mech.
4
,
489
(
1958
).
53.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum Mechanics: Non-Relativistic Theory
,
3rd ed.
(
Pergamon Press
,
1981
).
You do not currently have access to this content.