This work presents a novel one-layer nonhydrostatic formulation and model for nearshore waves. The proposed governing equations define velocities and pressures at arbitrary distances from the still water and only contain spatial derivatives of maximum second order. The formulation can be unified into the existing nonhydrostatic models by defining the variables at the middle depth and neglecting certain additional terms. A Stokes-type Fourier analysis was performed to analyze the formulations' properties and determine the location of variables. The proposed formulation exhibited a clear superiority in describing both the linear and nonlinear properties of the coastal waves. The equations were numerically solved using a hybrid-finite, volume-finite difference scheme. The resulting model accurately described the wave-breaking and runup processes that occurred due to the adoption of a shock-capturing scheme and seabed elevation reconstruction. The suggested novel numerical model was validated against two theoretical benchmark tests and three wave transformation experiments.

1.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
(
1981
).
2.
C. M. P.
Silva Santos
and
D. M.
Greaves
, “
A mixed Lagrangian–Eulerian method for non-linear free surface flows using multigrid on hierarchical Cartesian grids
,”
Comput. Fluids
36
,
914
(
2007
).
3.
S.
Osher
and
R. P.
Fedkiw
, “
Level set methods: An overview and some recent results
,”
J. Comput. Phys.
169
,
463
(
2001
).
4.
D.
He
,
Y.
Ma
,
G.
Dong
, and
M.
Perlin
, “
Predicting deep water wave breaking with a non-hydrostatic shock-capturing model
,”
Ocean Eng.
216
,
108041
(
2020
).
5.
O. B.
Fringer
,
M.
Gerritsen
, and
R. L.
Street
, “
An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator
,”
Ocean Modell.
14
,
139
(
2006
).
6.
G.
Ma
,
F.
Shi
, and
J. T.
Kirby
, “
Shock-capturing non-hydrostatic model for fully dispersive surface wave processes
,”
Ocean Modell.
43–44
,
22
(
2012
).
7.
J.
Shi
,
F.
Shi
,
J. T.
Kirby
,
G.
Ma
,
G.
Wu
,
C.
Tong
, and
J.
Zheng
, “
Pressure Decimation and Interpolation (PDI) method for a baroclinic non-hydrostatic model
,”
Ocean Modell.
96
(
2
),
265
(
2015
).
8.
M.
Zijlema
and
G. S.
Stelling
, “
Further experiences with computing non-hydrostatic free-surface flows involving water waves
,”
Int. J. Numer. Methods Fluids
48
,
169
(
2005
).
9.
C.
Ai
,
Y.
Ma
,
W.
Ding
,
Z.
Xie
, and
G.
Dong
, “
An efficient three-dimensional non-hydrostatic model for undular bores in open channels
,”
Phys. Fluids
33
,
127111
(
2021
).
10.
C.
Ai
,
Y.
Ma
,
W.
Ding
,
Z.
Xie
, and
G.
Dong
, “
Three-dimensional non-hydrostatic model for dam-break flows
,”
Phys. Fluids
34
,
022105
(
2022
).
11.
D.
He
,
Y.
Ma
,
G.
Dong
, and
M.
Perlin
, “
A numerical investigation of wave and current fields along bathymetry with porous media
,”
Ocean Eng.
244
,
110333
(
2022
).
12.
G.
Stelling
and
M.
Zijlema
, “
An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation
,”
Int. J. Numer. Methods Fluids
43
(
1
),
1
(
2003
).
13.
R. A.
Walters
, “
A semi-implicit finite element model for non-hydrostatic (dispersive) surface waves
,”
Int. J. Numer. Methods Fluids
49
,
721
(
2005
).
14.
Y.
Yamazaki
,
K. F.
Cheung
, and
Z.
Kowalik
, “
Depth-integrated, non-hydrostatic model with grid nesting for tsunami generation, propagation, and run-up
,”
Int. J. Numer. Methods Fluids
67
,
2081
(
2011
).
15.
K.
Fang
,
Z.
Liu
, and
Z.
Zou
, “
Modelling coastal water waves using a depth-integrated, non-hydrostatic model with shock-capturing ability
,”
J. Hydraul. Res.
53
,
119
(
2015
).
16.
X.
Lu
and
S.
Xie
, “
Depth-averaged non-hydrostatic numerical modeling of nearshore wave propagations based on the FORCE scheme
,”
Coastal Eng.
114
,
208
(
2016
).
17.
P.
Smit
,
M.
Zijlema
, and
G.
Stelling
, “
Depth-induced wave breaking in a non-hydrostatic, near-shore wave model
,”
Coastal Eng.
76
,
87
(
2013
).
18.
C.
Aricò
and
C.
Lo Re
, “
A non-hydrostatic pressure distribution solver for the nonlinear shallow water equations over irregular topography
,”
Adv. Water Resour.
98
,
47
(
2016
).
19.
G.
Ran
,
Q.
Zhang
, and
L.
Li
, “
A depth-integrated non-hydrostatic model for nearshore wave modelling based on the discontinuous Galerkin method
,”
Ocean Eng.
232
,
108661
(
2021
).
20.
F. N.
Cantero-Chinchilla
,
O.
Castro-Orgaz
, and
A. A.
Khan
, “
Depth-integrated nonhydrostatic free-surface flow modeling using weighted-averaged equations
,”
Int. J. Numer. Methods Fluids
87
,
27
(
2018
).
21.
F. N.
Cantero-Chinchilla
,
R. J.
Bergillos
, and
O.
Castro-Orgaz
, “
Nearshore coastal flow processes using weighted-averaged equations
,”
Ocean Eng.
211
,
107480
(
2020
).
22.
Q.
Liang
and
F.
Marche
, “
Numerical resolution of well-balanced shallow water equations with complex source terms
,”
Adv. Water Resour.
32
,
873
(
2009
).
23.
G.
Wang
,
J.
Zheng
, and
Q.
Liang
, “
Accuracy of depth-integrated nonhydrostatic wave models
,”
Ocean Eng.
149
,
217
(
2018
).
24.
P. M.
Steffler
and
J.
Yee-Chung
, “
Depth averaged and moment equations for moderately shallow free surface flow
,”
J. Hydraul. Res.
31
,
5
(
1993
).
25.
M.
Tonelli
and
M.
Petti
, “
Shock-capturing Boussinesq model for irregular wave propagation
,”
Coastal Eng.
61
,
8
(
2012
).
26.
B.
van Leer
, “
Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method
,”
J. Comput. Phys.
32
,
101
(
1979
).
27.
E. F.
Toro
,
M.
Spruce
, and
W.
Speares
, “
Restoration of the contact surface in the HLL-Riemann solver
,”
Shock Waves
4
,
25
(
1994
).
28.
X.
Lu
,
B.
Dong
,
B.
Mao
, and
X.
Zhang
, “
A two-dimensional depth-integrated non-hydrostatic numerical model for nearshore wave propagation
,”
Ocean Modell.
96
,
187
(
2015
).
29.
L.
Fraccarollo
and
E. F.
Toro
, “
Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems
,”
J. Hydraul. Res.
33
,
843
(
1995
).
30.
B.
Yu
,
Y.
Kawaguchi
,
W.-Q.
Tao
, and
H.
Ozoe
, “
Checkerboard pressure predictions due to the underrelaxation factor and time step size for a nonstaggered grid with momentum interpolation method
,”
Numer. Heat Transfer, Part B
41
,
85
(
2002
).
31.
H. L.
Stone
, “
Iterative solution of implicit approximations of multidimensional partial differential equations
,”
SIAM J. Numer. Anal.
5
,
530
(
1968
).
32.
T.
Ha
,
P.
Lin
, and
Y.-S.
Cho
, “
Generation of 3D regular and irregular waves using Navier–Stokes equations model with an internal wave maker
,”
Coastal Eng.
76
,
55
(
2013
).
33.
C.
Lee
,
Y. S.
Cho
, and
K.
Yum
, “
Internal generation of waves for extended Boussinesq equations
,”
Coastal Eng.
42
,
155
(
2001
).
34.
C. E.
Synolakis
, “
The runup of solitary waves
,”
J. Fluid Mech.
185
,
523
(
1987
).
35.
M. J.
Briggs
,
C. E.
Synolakis
,
G. S.
Harkins
, and
D. R.
Green
, “
Laboratory experiments of tsunami runup on a circular island
,”
Pure Appl. Geophys.
144
,
569
(
1995
).
You do not currently have access to this content.