The present study conducts numerical simulations of oblique detonation wave (ODW) induced on a wedge in the concentration gradient of a hydrogen–air mixture. As a continuation of the author's previous work on the morphology of the initiating flame in a non-uniform mixture, the concentration gradient is provided only to the ODW front to address its theoretical characteristics: the propagation velocity and structures of post-shock reactive flow associated with the Chapman–Jouguet and Zeldovich–von-Neumann–Doering theories, respectively. Applying a Gaussian distribution of the hydrogen mole fraction to the ODW front induces a curved shape that is concave or convex in fuel-rich or fuel-lean compositions, respectively. The local wave angle on a curved ODW matches the one-dimensional theory in a uniform mixture, which proves its robustness in predicting the detonation velocity in a non-uniform mixture. Furthermore, tracing streamlines with different compositions reveals that the flow path and variations in temperature and pressure are almost coincident with those predicted by one-dimensional and uniform assumptions. The slight variation among the different conditions is attributed to the effects of two-dimensional convergence/divergence that are intensified at stronger gradients. The understanding achieved in the present study will also benefit the evaluation of propagating detonation in a non-uniform mixture layer formed in propulsion devices.

1.
J. H. S.
Lee
,
The Detonation Phenomenon
(
Cambridge
,
2008
).
2.
P.
Wolanski
, “
Detonative propulsion
,”
Proc. Combust. Inst.
34
,
125
158
(
2013
).
3.
M. S.
Kuznetsov
,
V. I.
Alekseev
,
S. B.
Dorofeev
,
I. D.
Matsukov
, and
J. L.
Boccio
, “
Detonation propagation, decay, and reinitiation in nonuniform gaseous mixtures
,”
Symp. (Int.) Combust.
27
,
2241
2247
(
1998
).
4.
Y.
Wang
,
Z.
Chen
, and
H.
Chen
, “
Propagation of gaseous detonation in spatially inhomogeneous mixtures
,”
Phys. Fluids
33
,
116105
(
2021
).
5.
S.
Boulal
,
P.
Vidal
, and
R.
Zitoun
, “
Experimental investigation of detonation quenching in non-uniform compositions
,”
Combust. Flame
172
,
222
233
(
2016
).
6.
S.
Boulal
,
P.
Vidal
,
R.
Zitoun
,
T.
Matumoto
, and
A.
Matsuo
, “
Experimental investigation on detonation dynamics through a reactivity sink
,”
Combust. Flame
196
,
11
25
(
2018
).
7.
J.
Fujii
,
Y.
Kumazawa
,
A.
Matsuo
,
S.
Nakagami
,
K.
Matsuoka
, and
J.
Kasahara
, “
Numerical investigation on detonation velocity in rotating detonation engine chamber
,”
Proc. Combust. Inst.
36
,
2665
2672
(
2016
).
8.
Q.
Chen
,
J.
Huang
,
G.
Lei
,
T.
Wang
,
J.
Chen
, and
W.
Han
, “
Effects of confinement on detonation in H2-O2 mixture with transverse concentration gradient
,”
Int. J. Hydrogen Energy
48
,
18486
18497
(
2023
).
9.
K. G.
Vollmer
,
F.
Ettner
, and
T.
Sattelmayer
, “
Deflagration-to-detonation transition in hydrogen/air mixtures with a concentration gradient
,”
Combust. Sci. Technol.
184
,
1903
1915
(
2012
).
10.
X.
Zhao
,
J.
Wang
,
L.
Gao
,
L.
Gao
,
J.
Pan
, and
Y.
Zhu
, “
Effect of hydrogen concentration distribution on flame acceleration and deflagration-to-detonation transition in staggered obstacle-laden channel
,”
Phys. Fluids
35
,
016124
(
2023
).
11.
B.
Qiaodong
,
H.
Jiaxiang
,
Z.
Shijian
, and
W.
Chunsheng
, “
Experimental study on the auto-initiation of rotating detonation with high-temperature hydrogen-rich gas
,”
Phys. Fluids
35
,
045121
(
2023
).
12.
Z.
Pan
,
K.
Chen
,
J.
Qi
,
P.
Zhang
,
Y.
Zhu
,
J.
Pan
, and
M.
Gui
, “
The propagation characteristics of curved detonation wave: Experiments in helical channels
,”
Proc. Combust. Inst.
37
,
3585
3592
(
2019
).
13.
B. A.
Rankin
,
J. R.
Codoni
,
K. Y.
Cho
,
J. L.
Hoke
, and
F. R.
Schauer
, “
Investigation of the structure of detonation waves in a non-premixed hydrogen-air rotating detonation engine using mid-infrared imaging
,”
Proc. Combust. Inst.
37
,
3479
3486
(
2019
).
14.
V. R.
Katta
,
K. Y.
Cho
,
J. L.
Hoke
,
J. R.
Codoni
,
F. R.
Schauer
, and
W. M.
Roquemore
, “
Effect of increasing channel width on the structure of rotating detonation wave
,”
Proc. Combust. Inst.
37
,
3575
3583
(
2019
).
15.
A.
Kawasaki
,
T.
Inakawa
,
J.
Kasahara
,
K.
Goto
,
K.
Matsuoka
,
A.
Matsuo
, and
I.
Funaki
, “
Critical condition of inner cylinder radius for sustaining rotating detonation waves in rotating detonation engine thruster
,”
Proc. Combust. Inst.
37
,
3461
3469
(
2019
).
16.
L.
Yang
,
L.
Yue
,
D.
Yu
, and
Z.
Chen
, “
Numerical study on wave configuration of wedge-induced oblique detonation wave: Reactive boundary layer effect
,”
Phys. Fluids
34
,
116103
(
2022
).
17.
J. P.
Sislian
,
R.
Dudebout
,
J. M.
Schumacher
,
T.
Islam
, and
J.
Redford
, “
Incomplete mixing and off-design effects on shock-induced combustion ramjet performance
,”
J. Propul. Power
16
,
41
48
(
2000
).
18.
B.
Wang
and
Z.
Ren
, “
Effects of fuel concentration gradient on stabilization of oblique detonation waves in kerosene-air mixtures
,”
Flow Turbul. Combust.
(
2023
).
19.
K.
Iwata
,
S.
Nakaya
, and
M.
Tsue
, “
Numerical investigation of the effects of nonuniform premixing on shock-induced combustion
,”
AIAA J.
54
,
1682
1692
(
2016
).
20.
K.
Iwata
,
S.
Nakaya
, and
M.
Tsue
, “
Numerical simulation of incompletely premixed oblique detonation stabilized on a solid surface
,”
Trans. JSASS
14
,
31
38
(
2016
).
21.
K.
Iwata
,
S.
Nakaya
, and
M.
Tsue
, “
Wedge-stabilized oblique detonation in an inhomogeneous hydrogen-air mixture
,”
Proc. Combust. Inst.
36
,
2761
2769
(
2017
).
22.
R. A.
Gross
, “
Oblique detonation waves
,”
AIAA J.
1
,
1225
1227
(
1963
).
23.
C.
Li
,
K.
Kailasanath
, and
E. S.
Oran
, “
Detonation structures behind oblique shocks
,”
Phys. Fluids
6
,
1600
1611
(
1995
).
24.
L. F. F.
da Silva
and
B.
Deshaies
, “
Stabilization of an oblique detonation wave by a wedge: A parametric numerical study
,”
Combust. Flame
121
,
152
166
(
2000
).
25.
H.
Teng
,
Y.
Zhang
, and
Z.
Jiang
, “
Numerical investigation on the induction zone structure of the oblique detonation waves
,”
Comput. Fluids
95
,
127
131
(
2014
).
26.
Z.
Zhang
,
C.
Wen
,
C.
Yuan
,
Y.
Liu
,
G.
Han
,
C.
Wang
, and
Z.
Jiang
, “
An experimental study of formation of stabilized oblique detonation waves in a combustor
,”
Combust. Flame
237
,
111868
(
2022
).
27.
S.
Maeda
,
J.
Kasahara
, and
A.
Matsuo
, “
Oblique detonation wave stability around a spherical projectile by a high time resolution optical observation
,”
Combust. Flame
159
,
887
896
(
2012
).
28.
J.
Verreault
and
A. J.
Higgins
, “
Initiation of detonation by conical projectiles
,”
Proc. Combust. Inst.
33
,
2311
2318
(
2011
).
29.
Y.
Fang
,
Z.
Hu
,
H.
Teng
, and
Z.
Jiang
, “
Numerical study of inflow equivalence ratio inhomogeneity on oblique detonation formation in hydrogen-air mixtures
,”
Aerosp. Sci. Technol.
71
,
256
263
(
2017
).
30.
K.
Iwata
,
O.
Imamura
,
K.
Akihama
,
H.
Yamasaki
,
S.
Nakaya
, and
M.
Tsue
, “
Numerical study of self-sustained oblique detonation in a non-uniform mixture
,”
Proc. Combust. Inst.
38
,
3651
3659
(
2021
).
31.
K.
Iwata
,
N.
Hanyu
,
S.
Maeda
, and
T.
Obara
, “
Experimental visualization of sphere-induced oblique detonation in a non-uniform mixture
,”
Combust. Flame
244
,
112253
(
2022
).
32.
Y.
Daimon
and
A.
Matsuo
, “
Analogy between wedge-induced steady oblique detonation and one-dimensional piston-supported unsteady detonation
,”
Sci. Technol. Energetic Mater.
65
,
111
115
(
2004
).
33.
K.
Mazaheri
,
Y.
Mahmoudi
, and
M. I.
Radulescu
, “
Diffusion and hydrodynamic instabilities in gaseous detonations
,”
Combust. Flame
159
,
2138
2154
(
2012
).
34.
G.
Li
,
G.
Zhang
,
Y.
Zhang
,
L.
Ji
, and
S.
Gao
, “
Influence of viscous boundary layer on initiation zone structure of two-dimensional oblique detonation wave
,”
Aerosp. Sci. Technol.
104
,
106019
(
2020
).
35.
Y.
Fang
,
Z.
Zhang
, and
Z.
Hu
, “
Effect of boundary layer on wedge-induced oblique detonation structures in hydrogen-air mixtures
,”
Int. J. Hydrogen Energy
44
,
23429
23435
(
2019
).
36.
R. A.
Gross
and
W.
Chinitz
, “
A study of supersonic combustion
,”
J. Aerosp. Sci.
27
,
517
524
(
1960
).
37.
G. P.
Menees
,
H. G.
Adelman
, and
J. L.
Cambier
, “
Analytical and experimental investigations of the oblique detonation wave engine concept
,”
Report No. NASA TM-1991-102839
,
1991
.
38.
A. A.
Konnov
, “
Detailed reaction mechanism for small hydrocarbons combustion; release 0.5
” (
2020
), see http://homepages.vub.ac.be/∼akonnov/.
39.
K.
Kitamura
and
E.
Shima
, “
Towards shock-stable and accurate hypersonic heating computations
,”
J. Comput. Phys.
245
,
62
83
(
2013
).
40.
N. P.
Waerson
and
H.
Deconinck
, “
Design principles for bounded higher-order convection schemes a unified approach
,”
J. Comput. Phys.
224
,
182
207
(
2007
).
41.
Z.
Luan
,
Y.
Huang
,
R.
Deiterding
, and
Y.
You
, “
On the evolutions of triple point structure in wedge-stabilized oblique detonations
,”
Phys. Fluids
34
,
067118
(
2022
).
42.
J.
Verreault
,
A. J.
Higgins
, and
R. A.
Stowe
, “
Formation of transverse waves in oblique detonations
,”
Proc. Combust. Inst.
34
,
1913
1920
(
2013
).
43.
H.
Teng
,
H. D.
Ng
,
K.
Li
,
C.
Luo
, and
Z.
Jiang
, “
Evolution of cellular structures on oblique detonation surfaces
,”
Combust. Flame
162
,
470
477
(
2015
).
44.
A.
Jameson
and
S.
Yoon
, “
Lower-upper implicit schemes with multiple grids for the Euler equations
,”
AIAA J.
25
,
929
935
(
1987
).
45.
Y.
Ju
, “
Lower-upper scheme for chemically reacting flow with finite rate chemistry
,”
AIAA J.
33
,
1418
1425
(
1995
).
46.
C. W.
Shu
and
S.
Osher
, “
Efficient implementation of essentially non-oscillatory shock capturing schemes
,”
J. Comput. Phys.
77
,
439
471
(
1988
).
47.
B. J.
McBride
,
M. J.
Zehe
, and
S.
Gordon
,
Chemical Equilibrium with Applications
(
NASA Glenn Research Center
,
2010
).
48.
J. P.
Jossy
and
P.
Gupta
, “
Baroclinic interaction of forced shock waves with random thermal gradients
,”
Phys. Fluids
35
,
056114
(
2023
).
49.
M.
Luan
,
S.
Zhang
,
Z.
Xia
,
S.
Yao
, and
J.-P.
Wang
, “
Analytical and numerical study of the expansion effect on the velocity deficit of rotating detonation waves
,”
Combust. Theor. Model.
24
,
761
774
(
2020
).
You do not currently have access to this content.