The propeller tip of an unmanned aerial vehicle on Mars operates at a low-Reynolds number (Re = 1–5 × 104) and transonic velocity range (Ma = 0.7–1.2). Generally, this implies flow separation and shock waves in the flow field. Furthermore, the impact of Martian atmospheric sand particles significantly affects the aerodynamic performance, and numerical simulations of this issue have received increasing attention recently. Aimed at a characteristic airfoil, the study of a low-Reynolds number transonic flow and the influence of sand-containing flow on airfoil aerodynamic performance were analyzed in this study. The discrete phase model was adopted to simulate the two-phase flow considering Re = 8100–56 800 and Ma = 0.2–1.4. The results indicate that, compared with the atmospheric environment on Earth, the low-pressure atmosphere on Mars can delay the generation of the surface shock wave of the airfoil as well as alter the shock wave structure, significantly increasing the lift-to-drag ratio at high subsonic velocities (Ma = 0.6–0.8). Moreover, due to the weak compressive wave generated at the separation position, the low-pressure atmosphere weakens the strength of the trailing-edge oblique shock wave and reduces the drag when Ma = 0.9–1.4. Compared with a sand-free environment, sand-containing flow can affect the separation and transition positions of laminar separation bubbles, in addition to alter the shock wave structure. At different Mach numbers, the lift and drag of the airfoil first increased and then decreased as the sand particles flowed in the horizontal direction during the entire process of particles entering and exiting the airfoil flow field.

1.
J.
Levine
,
D.
Blaney
,
J. E. P.
Connemey
,
R.
Greeley
,
J.
Head Iii
,
J.
Hoffman
,
B.
Jakosky
,
C.
McKay
,
C.
Sotin
, and
M.
Summers
, “
Science from a Mars airplane: The aerial regional-scale environmental survey (ARES) of Mars
,” AIAA Paper 2003-6576,
2003
.
2.
N.
Tsuzuki
,
S.
Sato
, and
T.
Abe
, “
Conceptual design and feasibility for a miniature Mars exploration rotorcraft
,” in
Proceedings of 24th International Congress of the Aeronautical
,
Yokohama, Japan
, 2004; available at http://www.icas.org/ICAS_ARCHIVE/ICAS2004/PAPERS/142.PDF.
3.
S. J.
D'Urso
,
K.
Tsai
,
P.
Chadha
, and
H. H.
Hilton
, “
A systems engineering approach to the conceptual design of a Martian UAV
,” AIAA Paper 2016-0214,
2016
.
4.
B.
Balaram
,
T.
Canham
,
C.
Duncan
,
H. F.
Grip
,
W.
Johnson
,
J.
Maki
,
A.
Quon
,
R.
Stern
, and
D.
Zhu
, “
Mars helicopter technology demonstrator
,” AIAA Paper 2018-0023,
2018
.
5.
P.
O'Brien
, “
Using a robotic helicopter to fuel interest in and augment the human exploration of the planet Mars
,” AIAA Paper 2003-6275,
2003
.
6.
A.
Datta
,
B.
Roget
,
D.
Griffiths
,
G.
Pugliese
,
J.
Sitaraman
,
J.
Bao
,
L.
Liu
, and
O.
Gamard
, “
Design of a Martian autonomous rotary-wing vehicle
,”
J. Aircraft
40
(
3
),
461
472
(
2003
).
7.
See https://www.extremetech.com/extreme/229937-nasa-testing-helicopter-drone-toaccompany-next-Mars-rover for Nasa testing helicopter drone to accompany next Mars rover.
8.
T.
Désert
,
J. M.
Moschetta
, and
H.
Bézard
, “
Numerical and experimental investigation of an airfoil design for a Martian micro rotorcraft
,”
Int. J. Micro Air Veh.
10
(
3
),
262
272
(
2018
).
9.
Y.
Wang
,
H.
Zhang
,
Y.
Wu
,
Y.
Li
, and
Y.
Zhu
, “
Supersonic compressor cascade flow control using plasma actuation at low Reynolds number
,”
Phys. Fluids
34
(
2
),
027105
(
2022
).
10.
W.
Duan
,
W.
Chen
,
X.
Zhao
, and
W.
Qiao
, “
Experimental study of low pressure turbine cascade under high Mach number and low Reynolds number conditions
,”
J. Aerosp. Power
(published online 2022).
11.
Z. Y.-C.
Liu
and
J. R.
Zimbelman
, “
Recent near-surface wind directions inferred from mapping sand ripples on Martian dunes
,”
Icarus
261
,
169
181
(
2015
).
12.
P. F.
Schewe
, “
Martian dunes form in rare bursts
,”
Phys. Today
61
(
1
),
28
(
2008
).
13.
J.
Wu
,
H.
Jiang
,
Z.
Ma
,
W.
Chen
, and
X.
Huang
, “
Numerical investigation of airfoil rotor interaction at low Reynolds number
,”
Phys. Fluids
34
(
2
),
025118
(
2022
).
14.
N. H.
Anh
,
M.
Mizoguchi
, and
H.
Itoh
, “
Unsteady flow field around NACA0012 airfoil undergoing constant pitch rates at low Reynolds numbers
,” AIAA Paper 2020-3041,
2020
.
15.
J.
Wu
,
G.
Li
,
L.
Chen
, and
Y.
Zhang
, “
Unsteady aerodynamic performance of a tandem flapping–fixed airfoil configuration at low Reynolds number
,”
Phys. Fluids
34
(
11
),
111907
(
2022
).
16.
H.
Mukohara
and
M.
Anyoji
, “
Computational analysis of compressibility effect on flow field and aerodynamics at low Reynolds numbers
,”
Phys. Fluids
34
(
5
),
056109
(
2022
).
17.
S.
Boughou
,
A. A.
Omar
,
O.
Elsayed
,
R.
Boukharfane
, and
M.
Aldheeb
, “
Low Reynolds number effect on CFD prediction of bio inspired aerodynamics
,” AIAA Paper 2022-1965,
2022
.
18.
P.
Catalano
and
D.
de Rosa
, “
Large eddy simulations and RANS models for airfoils at low Reynolds number
,” AIAA Paper 2020-2990,
2020
.
19.
S.
Deck
, “
Numerical simulation of transonic buffet over a supercritical airfoil
,”
AIAA J.
43
(
7
),
1556
1566
(
2005
).
20.
D.
Douvi
,
D.
Margaris
, and
A.
Davaris
, “
Aerodynamic performance of a NREL S809 airfoil in an air-sand particle two-phase flow
,”
Computation
5
(
4
),
13
(
2017
).
21.
Y.
Shi
and
W.
Kollmann
, “
Aeroacoustic characteristics of a wind turbine airfoil under dusty air conditions
,” AIAA Paper 2021-2296,
2021
.
22.
B. J.
Connolly
and
E.
Loth
, “
Simulations of ash and sand impact on a hypersonic forebody
,”
AIAA J.
59
,
1
10
(
2020
).
23.
L.
Zhang
,
G.
Liu
, and
W.
Leng
, “
Development of the simulation & experiment system for martian atmosphere simulation environment box
,” in
MMSA 2018
(
Atlantis Press
,
2018
), p.
14
.
24.
M.
Veismann
,
C.
Dougherty
,
J.
Rabinovitch
,
A.
Quon
, and
M.
Gharib
, “
Low-density multi-fan wind tunnel design and testing for the Ingenuity Mars Helicopter
,”
Exp. Fluids
62
(
9
),
193
(
2021
).
25.
R.
Bardera
,
S.
Sor
, and
A.
García-Magariño
, “
Aerodynamics of mars 2020 rover wind sensors
,” in
Mars Exploration
(
IntechOpen
,
2020
).
26.
D.
Li
,
H.
Chang
,
Z.
Zuo
,
H.
Wang
, and
S.
Liu
, “
Aerodynamic characteristics and mechanisms for bionic airfoils with different spacings
,”
Phys. Fluids
33
(
6
),
064101
(
2021
).
27.
B. C.
Khoo
, “
Study on flow separation and transition of the airfoil in low Reynolds number
,”
Phys. Fluids
31
(
10
),
103601
(
2019
).
28.
R. J.
Mcghee
,
B. S.
Walker
, and
B. F.
Millard
, “
Experimental results for the Eppler 387 airfoil at low Reynolds numbers in the Langley low-turbulence pressure tunnel
,” NASA TM-4062 (
1988
).
29.
P. H.
Cook
,
M. A.
Mcdonald
, and
M. C.
Firmin
, “
Aerofoil RAE 2822: Pressure distributions, and boundary layer and wake measurements
,”
Report No. AR-138
(
Advisory Group for Aerospace Research and Development
,
1979
).
30.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
(
8
),
1598
1605
(
1994
).
31.
A. A.
Townsend
,
The Structure of Turbulent Shear Flow
(
Cambridge University Press
,
1976
), pp.
49
53
.
32.
X.
Wen
,
Y.
Liu
,
L.
Fang
, and
L.
Lu
, “
Improving the capability of k-ω SST turbulence model for predicting stall characteristics of airfoil
,”
J. Beijing Univ. Aeronaut. Astronaut.
2013
(
08
),
1127
1132
.
33.
M.
Drela
, “
Transonic low-Reynolds number airfoils
,”
J. Aircraft
29
(
6
),
1106
1113
(
1992
).
You do not currently have access to this content.