Recently, with the development of detonation-based propulsion systems, scholars have begun to study how to perform mode control on the rotating detonation combustor (RDC). It is important to figure out the influence of operation mode transition on the RDC. Actually, the essential of different modes is the different multi-wave structures. In this study, two-dimensional numerical simulations of the RDC are conducted to study the multi-wave effect on the stability and performance of the RDC. A uniform inlet condition is adopted in simulations to eliminate the impact of discrepancy mass flow rates, and a mode-locked ignition method is used to induce RDC flow fields with different detonation wave numbers. It is found that the flow field stability and outlet uniformity are improved with increasing detonation counts, and the energy proportion in the flow field is little affected by the multi-wave structure. However, the increase in detonation number will cause a reduction of the mass-averaged total pressure ratio at the exit. Underlying relationship between the unsteady flow field and the total pressure gain is discussed. The total pressure gain is directly linked with the non-uniformity of the circumferential flow field. Then, by utilizing particle trace, the envelope of the thermodynamic cycle is illustrated and the pseudo-thermal efficiency of each case is given. The result implies that the wave number has hardly effect on the thermal efficiency of the combustion chamber. By summarizing the perimeter, axial length, and wave number in the combustor, parameter ξ is carried out and its effects on the uniformity and total pressure ratio in the RDC are concluded.

1.
P.
Wolański
, “
Detonative propulsion
,”
Proc. Combust. Inst.
34
,
125
158
(
2013
).
2.
K.
Kailasanath
, “
Recent developments in the research on pressure-gain combustion devices
,” in
Innovations in Sustainable Energy and Cleaner Environment
, edited by
A. K.
Gupta
,
A.
De
,
S. K.
Aggarwal
,
A.
Kushari
, and
A.
Runchal
(
Springer
,
Singapore
,
2020
), pp.
3
21
.
3.
B.
Voitsekhovskii
, “
Stationary spin detonation
,”
Sov. J. Appl. Mech. Tech. Phys.
3
,
157
164
(
1960
).
4.
F. K.
Lu
and
E. M.
Braun
, “
Rotating detonation wave propulsion: Experimental challenges, modeling, and engine concepts
,”
J. Propul. Power
30
,
1125
1142
(
2014
).
5.
E. J.
Gutmark
, “
Pressure gain combustion
,”
Shock Waves
31
,
619
621
(
2021
).
6.
S.-j.
Zhang
,
J. Z.
Ma
, and
J.
Wang
, “
Theoretical and numerical investigation on total pressure gain in rotating detonation engine
,”
AIAA J.
58
,
4866
4877
(
2020
).
7.
A. St.
George
,
R.
Driscoll
,
V.
Anand
, and
E.
Gutmark
, “
On the existence and multiplicity of rotating detonations
,”
Proc. Combust. Inst.
36
,
2691
2698
(
2017
).
8.
X.-J.
He
,
X.-Y.
Liu
, and
J.-P.
Wang
, “
Numerical study of the mechanisms of the longitudinal pulsed detonation in two-dimensional rotating detonation combustors
,”
Phys. Fluids
35
,
036123
(
2023
).
9.
V.
Anand
and
E.
Gutmark
, “
Rotating detonation combustors and their similarities to rocket instabilities
,”
Prog. Energy Combust. Sci.
73
,
182
234
(
2019
).
10.
V.
Raman
,
S.
Prakash
, and
M.
Gamba
, “
Nonidealities in rotating detonation engines
,”
Annu. Rev. Fluid Mech.
55
,
639
(
2023
).
11.
Y.
Wu
,
G.
Xu
,
C.
Ding
, and
C.
Weng
, “
On the wave propagation modes and operation range in rotating detonation combustor with varied injection and outlet throat
,”
Phys. Fluids
35
,
016128
(
2023
).
12.
G.
Rong
,
M.
Cheng
,
Z.
Sheng
,
X.
Liu
, and
J.
Wang
, “
Investigation of counter-rotating shock wave phenomenon and instability mechanisms of rotating detonation engine with hollow combustor and Laval nozzle
,”
Int. J. Hydrogen Energy
47
,
23019
23037
(
2022
).
13.
G.
Rong
,
M.
Cheng
,
Z.
Sheng
,
X.
Liu
,
Y.
Zhang
, and
J.
Wang
, “
Investigation of counter-rotating shock wave and wave direction control of hollow rotating detonation engine with Laval nozzle
,”
Phys. Fluids
34
,
056104
(
2022
).
14.
F.
Chacon
,
A. D.
Feleo
, and
M.
Gamba
, “
Secondary waves dynamics and their impact on detonation structure in rotating detonation combustors
,”
Shock Waves
31
,
675
(
2021
).
15.
M.
Zhao
and
H.
Zhang
, “
Origin and chaotic propagation of multiple rotating detonation waves in hydrogen/air mixtures
,”
Fuel
275
,
117986
(
2020
).
16.
J.
Suchocki
,
S.-T.
Yu
,
J.
Hoke
,
A.
Naples
,
F.
Schauer
, and
R.
Russo
, “
Rotating detonation engine operation
,” AIAA Paper No. 2012-119,
2012
.
17.
X.
Huang
,
C. J.
Teo
, and
B. C.
Khoo
, “
Wave mode dynamics in an ethylene-air rotating detonation combustor
,”
AIAA J.
59
,
1808
1823
(
2021
).
18.
Y.
Chen
,
X.
Liu
, and
J.
Wang
, “
Effects of reversed shock waves on operation mode in H2/O2 rotating detonation chambers
,”
Energies
14
,
8296
(
2021
).
19.
J.
Koch
, “
Data-driven surrogates of rotating detonation engine physics with neural ordinary differential equations and high-speed camera footage
,”
Phys. Fluids
33
,
091703
(
2021
).
20.
J.
Koch
and
J. N.
Kutz
, “
Modeling thermodynamic trends of rotating detonation engines
,”
Phys. Fluids
32
,
126102
(
2020
).
21.
Z.
Luan
,
Y.
Huang
,
S.
Gao
, and
Y.
You
, “
Formation of multiple detonation waves in rotating detonation engines with inhomogeneous methane/oxygen mixtures under different equivalence ratios
,”
Combust. Flame
241
,
112091
(
2022
).
22.
V. R.
Hasti
,
N. O.
Attal
, and
G.
Kumar
, “
Analysis of mode transition in a rotating detonation engine combustor
,” AIAA Paper No. 2022-1111,
2022
.
23.
B. R.
Bigler
,
J. R.
Burr
,
J. W.
Bennewitz
,
S.
Danczyk
, and
W. A.
Hargus
, “
Performance effects of mode transitions in a rotating detonation rocket engine
,” AIAA Paper No. 2020-3852,
2020
.
24.
P.
Zhang
,
P. A.
Meagher
, and
X.
Zhao
, “
Multiplicity for idealized rotational detonation waves
,”
Phys. Fluids
33
,
106102
(
2021
).
25.
Z.
Sheng
,
M.
Cheng
,
D.
Shen
, and
J.-P.
Wang
, “
An active direction control method in rotating detonation combustor
,”
Int. J. Hydrogen Energy
47
,
23427
(
2022
).
26.
S.
Yao
,
X.
Tang
, and
W.
Zhang
, “
Adaptive operating mode switching process in rotating detonation engines
,”
Acta Astronaut.
205
,
239
(
2023
).
27.
L.
Deng
,
H.
Ma
,
C.
Xu
,
X.
Liu
, and
C.
Zhou
, “
The feasibility of mode control in rotating detonation engine
,”
Appl. Therm. Eng.
129
,
1538
(
2018
).
28.
Z.
Xia
,
X.
Tang
,
M.
Luan
,
S.
Zhang
,
Z.
Ma
, and
J.
Wang
, “
Numerical investigation of two-wave collision and wave structure evolution of rotating detonation engine with hollow combustor
,”
Int. J. Hydrogen Energy
43
,
21582
21591
(
2018
).
29.
R. V. V.
Petrescu
,
A.
Machín
,
K.
Fontánez
,
J. C.
Arango
,
F. M.
Márquez
, and
F. I. T.
Petrescu
, “
Hydrogen for aircraft power and propulsion
,”
Int. J. Hydrogen Energy
45
,
20740
20764
(
2020
).
30.
C.
Guirao
,
R.
Knystautas
,
J.
Lee
,
W.
Benedick
, and
M.
Berman
, “
Hydrogen-air detonations
,”
Symp. (Int.) Combust.
19
,
583
590
(
1982
).
31.
C. M.
Guirao
,
R.
Knystautas
, and
J. H.
Lee
, “
A summary of hydrogen-air detonation experiments
,”
U.S. Nuclear Regulatory Commission Report No. NUREG/CR-4961
,
1989
.
32.
H.
Li
and
Z.
Chen
, “
Detonation development in hydrogen/air mixtures inside a closed chamber: Role of a cold wall
,”
Proc. Combust. Inst.
39
,
3011
(
2023
).
33.
J.
Sun
,
P.
Yang
,
B.
Tian
, and
Z.
Chen
, “
Effects of wedge-angle change on the evolution of oblique detonation wave structure
,”
Phys. Fluids
34
,
096112
(
2022
).
34.
W.
Han
,
J.
Huang
, and
C.
Wang
, “
Pulsating and cellular instabilities of hydrogen–oxygen detonations with ozone sensitization
,”
Phys. Fluids
33
,
076113
(
2021
).
35.
J. A.
Nicholls
,
H. R.
Wilkinson
, and
R. B.
Morrison
, “
Intermittent detonation as a thrust-producing mechanism
,”
J. Jet Propul.
27
,
534
541
(
1957
).
36.
F. A.
Bykovskii
,
S. A.
Zhdan
, and
E. F.
Vedernikov
, “
Continuous spin detonations
,”
J. Propul. Power
22
,
1204
1216
(
2006
).
37.
J.
Kindracki
,
A.
Kobiera
,
P.
Wolański
,
Z.
Gut
,
M.
Folusiak
, and
K.
Swiderski
, “
Experimental and numerical study of the rotating detonation engine in hydrogen-air mixtures
,” in
Progress in Propulsion Physics
(
EDP Sciences
,
Versailles, France
,
2011
), pp.
555
582
.
38.
T.
Poinsot
and
D.
Veynante
,
Theoretical and Numerical Combustion
(
Edwards
,
Philadelphia, PA
,
2005
).
39.
D. G.
Goodwin
,
H. K.
Moffat
,
I.
Schoegl
,
R. L.
Speth
, and
B. W.
Weber
, see https://www.cantera.org for “
Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes
” (
2022
).
40.
M.
Hishida
and
A.
Hayashi
, “
Numerical simulation of pulsed jet plume combustion
,”
Dynamics of Heterogeneous Combustion and Reacting Systems
(
AIAA
,
1993
), pp.
343
361
.
41.
H. G.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
,
620
631
(
1998
).
42.
S. S.
Chen
,
F. J.
Cai
,
H. C.
Xue
,
N.
Wang
, and
C.
Yan
, “
An improved AUSM-family scheme with robustness and accuracy for all Mach number flows
,”
Appl. Math. Modell.
77
,
1065
1081
(
2020
).
43.
L.-F.
Zhang
,
J. Z.
Ma
,
S.-J.
Zhang
,
M.-Y.
Luan
, and
J.-P.
Wang
, “
Three-dimensional numerical study on rotating detonation engines using reactive Navier-Stokes equations
,”
Aerosp. Sci. Technol.
93
,
105271
(
2019
).
44.
K.
Yao
,
P.
Yang
,
H.
Teng
,
Z.
Chen
, and
C.
Wang
, “
Effects of injection parameters on propagation patterns of hydrogen-fueled rotating detonation waves
,”
Int. J. Hydrogen Energy
47
,
38811
38822
(
2022
).
45.
T.
Sato
,
F.
Chacon
,
M.
Gamba
, and
V.
Raman
, “
Mass flow rate effect on a rotating detonation combustor with an axial air injection
,”
Shock Waves
31
,
741
(
2021
).
46.
S.
Prakash
,
V.
Raman
,
C.
Lietz
,
W. A.
Hargus
, and
S. A.
Schumaker
, “
High fidelity simulations of a methane-oxygen rotating detonation rocket engine
,” AIAA Paper No. 2020-0689,
2020
.
47.
S.
Gordon
and
B.
McBride
, “
Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations
,”
Report No. NASA SP-273
(
Scientific and Technical Information Office, National Aeronautics and Space Administration
,
1976
).
48.
Y.
Wang
,
W.
Han
,
R.
Deiterding
, and
Z.
Chen
, “
Effects of disturbance on detonation initiation in H 2 / O 2 / N 2 mixture
,”
Phys. Rev. Fluids
3
,
123201
(
2018
).
49.
X.-Y.
Liu
,
M.-Y.
Luan
,
Y.-L.
Chen
, and
J.-P.
Wang
, “
Propagation behavior of rotating detonation waves with premixed kerosene/air mixtures
,”
Fuel
294
,
120253
(
2021
).
50.
Y.
Liu
,
W.
Zhou
,
Y.
Yang
,
Z.
Liu
, and
J.
Wang
, “
Numerical study on the instabilities in H2-air rotating detonation engines
,”
Phys. Fluids
30
,
046106
(
2018
).
51.
W.
Zhu
,
Y.
Wang
, and
J.
Wang
, “
Flow field of a rotating detonation engine fueled by carbon
,”
Phys. Fluids
34
,
073311
(
2022
).
52.
T.
Poinsot
and
S.
Lelef
, “
Boundary conditions for direct simulations of compressible viscous flows
,”
J. Comput. Phys.
101
,
104
129
(
1992
).
53.
S.
Yao
,
M.
Liu
, and
J.
Wang
, “
Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine
,”
Combust. Sci. Technol.
187
,
1867
1878
(
2015
).
54.
S.
Zhang
,
S.
Yao
,
M.
Luan
,
L.
Zhang
, and
J.
Wang
, “
Effects of injection conditions on the stability of rotating detonation waves
,”
Shock Waves
28
,
1079
1087
(
2018
).
55.
M.
Luan
, “
Theoretical modeling and numerical simulation of flow field characteristics of continuous detonation waves
,” Ph.D. thesis (
Peking University
,
2021
) (in Chinese).
56.
M. W.
Chase
,
NIST-JANAF Thermochemical Tables
,
4th ed.
(
American Institute of Physics
,
1998
).
57.
N. A.
Cumpsty
and
J. H.
Horlock
, “
Averaging nonuniform flow for a purpose
,”
J. Turbomach.
128
,
120
129
(
2006
).
58.
H.
Wen
,
W.
Fan
, and
B.
Wang
, “
Theoretical analysis on the total pressure gain of rotating detonation systems
,”
Combust. Flame
248
,
112582
(
2023
).
59.
R. A.
Fisher
, “
Statistical methods for research workers
,” in
Breakthroughs in Statistics: Methodology and Distribution
, edited by
S.
Kotz
and
N. L.
Johnson
(
Springer
,
New York
,
1992
), pp.
66
70
.
60.
R.
Zhou
and
J.-P.
Wang
, “
Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines
,”
Combust. Flame
159
,
3632
3645
(
2012
).
61.
Y.
Zel'dovich
, “
To the question of energy use of detonation combustion
,”
J. Propul. Power
22
,
588
592
(
2006
).
You do not currently have access to this content.