The effect of an isentropic compression wave fan on shock wave/turbulent boundary layer interaction induced by a curved fin is studied by the nanoparticle-based planar laser scattering method, oil flow method, and numerical method. The curved fin consists of two parts: A curved surface generating an isentropic compression fan and a planar surface ensuring the compression fan focuses into a swept shock wave. The flowfield is compared with the three-dimensional separation flowfield induced by a planar fin with the same deflection angle. The results show that the compression fan can compress the turbulent boundary layer without separation, while the focused swept shock wave drives the whole turbulent boundary layer to separate. The flat plate turbulent boundary layer beside the fin is mainly rolled into the separation vortex. The focused swept shock wave adjusts the separation zone to be quasi-conical, suggesting that the quasi-conical separation is the nature of the flowfield in which a turbulent boundary layer interacts with a swept shock wave. The isentropic compression part of the curved fin can prevent the secondary separation of the planar swept shock wave/turbulent boundary layer interaction by changing the attachment process. Based on the focus point of the compression wave fan, the equivalent apex of the curved fin is proposed. The area and intensity of the separation vortex induced by the curved fin are nearly linear as those in the planar fin interaction flowfield. However, the area of the separation vortex induced by the curved fin is larger. The intensity growth of the vortex caused by the curved fin is slower than that of the planar fin.

1.
Y.
You
, “
An overview of the advantages and concerns of hypersonic inward turning inlets
,” AIAA Paper No. 2011-2269,
2011
.
2.
Y.
Li
,
Z.
Li
, and
J.
Yang
, “
Tomography-like flow visualization of a hypersonic inward-turning inlet
,”
Chin. J. Aeronaut.
34
,
44
49
(
2021
).
3.
D. S.
Dolling
, “
Fifty years of shock-wave/boundary-layer interaction research: What next?
,”
AIAA J.
39
,
1517
1531
(
2001
).
4.
A.
Zheltovodov
, “
Some advances in research of shock wave turbulent boundary layer interactions
,” AIAA paper No. 2006-496,
2006
.
5.
D. V.
Gaitonde
, “
Progress in shock wave/boundary layer interactions
,”
Prog. Aerosp. Sci.
72
,
80
99
(
2015
).
6.
C.-h.
Hu
,
W.-m.
Jiang
,
X.-h.
Huang
,
W.-j.
Zhou
, and
L.-w.
Xu
, “
Unsteadiness of shock-wave/boundary-layer interactions induced by unswept and sweptback ramps
,”
J. Exp. Fluid Mech.
19
,
11
16
(
2005
).
7.
C. A.
Trexler
, “
Performance of an inlet for an integrated scramjet concept
,”
J. Aircr.
11
,
589
591
(
1974
).
8.
Y.
Wang
,
J.-h.
Liang
,
X.-q.
Fan
,
W.-d.
Liu
, and
Z.-g.
Wang
, “
Investigation on the unstarted flowfield of a three-dimensional sidewall compression hypersonic inlet
,” AIAA Paper No. 2009-7404,
2009
.
9.
B.-h.
Zhang
,
Y.-x.
Zhao
, and
J.
Liu
, “
Effects of bleed hole size on supersonic boundary layer bleed mass flow rate
,”
J. Zhejiang Univ.-Sci. A
21
,
652
662
(
2020
).
10.
R.-m.
Yi
,
R.-l.
Zhang
,
M.-x.
Yue
,
L.
Li
,
H.
Ren
, and
H.-y.
Zhao
, “
Crossing shock waves/transitional boundary layers interactions in the double vertical wedges configuration
,”
J. Exp. Fluid Mech.
36
,
1
12
(
2022
).
11.
H.
Yang
,
H.
Zong
,
H.
Liang
,
Y.
Wu
,
C.
Zhang
,
Y.
Kong
, and
Y.
Li
, “
Swept shock wave/boundary layer interaction control based on surface arc plasma
,”
Phys. Fluids
34
,
087119
(
2022
).
12.
S. B.
Verma
and
M.
Chidambaranathan
, “
Control of three-dimensional separation due to sharp fins using co-rotating vanes ahead of quasi-conical and conical zones
,”
Phys. Fluids
34
,
106111
(
2022
).
13.
J.
Zhai
,
C.-a.
Zhang
,
F.-m.
Wang
, and
W.-w.
Zhang
, “
Control of shock-wave/boundary-layer interaction using a backward-facing step
,”
Aerosp. Sci. Technol.
126
,
107665
(
2022
).
14.
W.
Konrad
,
A.
Smits
, and
D.
Knight
, “
A three-dimensional supersonic turbulent boundary layer generated by an isentropic compression
,” AIAA Paper No. 1992-310,
1992
.
15.
W.
Konrad
,
A.
Smits
, and
D.
Knight
, “
Mean flowfield structure of a three-dimensional supersonic turbulent boundary layer
,” AIAA Paper No. 1993-661,
1993
.
16.
W.
Konrad
,
A.
Smits
, and
D.
Knight
, “
A combined experimental and numerical study of a three-dimensional supersonic turbulent boundary layer
,”
Exp. Therm. Fluid Sci.
9
,
156
164
(
1994
).
17.
J. J.
Korte
,
A.
Kumar
,
D. J.
Singh
, and
A. H.
Auslender
, “
Numerical study of the performance of swept, curved compression surface scramjet inlets
,”
J. Propul. Power
10
,
841
847
(
1994
).
18.
H.
Kubota
and
J. L.
Stollery
, “
An experimental study of the interaction between a glancing shock wave and a turbulent boundary layer
,”
J. Fluid Mech.
116
,
431
458
(
1982
).
19.
F. S.
Alvi
and
G. S.
Settles
, “
Physical model of the swept shock wave/boundary-layer interaction flowfield
,”
AIAA J.
30
,
2252
2258
(
1992
).
20.
F. K.
Lu
, “
Quasiconical free interaction between a swept shock and a turbulent boundary layer
,”
AIAA J.
31
,
686
692
(
1993
).
21.
J.
Fang
,
Y.
Yao
,
A. A.
Zheltovodov
, and
L.
Lu
, “
Investigation of three-dimensional shock wave/turbulent-boundary-layer interaction initiated by a single fin
,”
AIAA J.
55
,
509
523
(
2017
).
22.
K. H.
Token
, “
Heat transfer due to shock wave turbulent boundary layer interactions on high speed weapon systems
,” Tech. Rep. No. ADA002685,
McDonnell Aircraft Company
,
Fort Belvoir
,
1974
.
23.
D. D.
Knight
,
D.
Badekast
,
C. C.
Horstmant
, and
G. S.
Settles
, “
Quasiconical flowfield structure of the three-dimensional single fin interaction
,”
AIAA J.
30
,
2809
2816
(
1992
).
24.
A. G.
Panaras
, “
Numerical investigation of the high-speed conical flow past a sharp fin
,”
J. Fluid Mech.
236
,
607
633
(
1992
).
25.
A. G.
Panaras
, “
The effect of the structure of swept-shock-wave/turbulent-boundary-layer interactions on turbulence modelling
,”
J. Fluid Mech.
338
,
203
230
(
1997
).
26.
R. R.
Morajkar
,
R. L.
Klomparens
,
W. E.
Eagle
,
J. F.
Driscoll
,
M.
Gamba
, and
J. A.
Benek
, “
Relationship between intermittent separation and vortex structure in a three-dimensional shock/boundary-layer interaction
,”
AIAA J.
54
,
1862
1880
(
2016
).
27.
V.
Kolář
, “
Vortex identification: New requirements and limitations
,”
Int. J. Heat Fluid Flow
28
,
638
652
(
2007
).
28.
G.
He
,
J.
Zhou
, and
Y-x
Zhao
, “
Application of free interaction theory in swept shock wave/turbulent boundary layer interactions
,”
J. Visualization
21
,
203
214
(
2018
).
29.
F.-j.
Sheng
,
H.-j.
Tan
,
Y.
Zhuang
,
H.-x.
Huang
,
H.
Chen
, and
W.-x.
Wang
, “
Visualization of conical vortex and shock in swept shock/turbulent boundary layer interaction flow
,”
J. Visualization
21
,
909
914
(
2018
).
30.
Y.-y.
Zhou
,
Y.-l.
Zhao
,
Y.-x.
Zhao
,
G.
He
, and
P.-y.
Gao
, “
Investigation on conical separation vortex generated by swept shock wave/turbulent boundary layer interaction
,”
Acta Astronaut.
199
,
103
112
(
2022
).
31.
Y.
Wang
,
Y.
Gao
, and
C.
Liu
, “
Letter: Galilean invariance of Rortex
,”
Phys. Fluids
7
,
111701
(
2018
).
32.
C.
Liu
,
Y.
Gao
,
S.
Tian
, and
X.
Dong
, “
Rortex—A new vortex vector definition and vorticity tensor and vector decompositions
,”
Phys. Fluids
30
,
035103
(
2018
).
33.
Y.
Gao
and
C.
Liu
, “
Rortex and comparison with eigenvalue-based vortex identification criteria
,”
Phys. Fluids
30
,
085107
(
2018
).
34.
C.
Liu
,
Y.-s.
Gao
,
X.-r.
Dong
,
Y.-q.
Wang
,
J.-m.
Liu
,
Y.-n.
Zhang
,
X.-s.
Cai
, and
N.
Gui
, “
Third generation of vortex identification methods: Omega and Liutex/Rortex based systems
,”
J. Hydrodyn.
31
,
205
223
(
2019
).
35.
Y.-y.
Zhou
,
Y.-l.
Zhao
,
L.-c.
Wang
,
R.
Yang
,
Y.-x.
Zhao
, and
P.-y.
Gao
, “
Evolution characteristics of streamwise vortex of crossing shock wave/turbulent boundary layer interaction
,”
Phys. Fluids
35
,
016107
(
2023
).
36.
G.
Emanuel
, “
Nearfield analysis of a compressive supersonic ramp
,”
Phys. Fluids
25
,
1127
1133
(
1982
).
37.
G.
Emanuel
, “
Numerical method and results for inviscid supersonic flow over a compressive ramp
,”
Comput. Fluids
11
,
367
377
(
1983
).
38.
G.
Emanuel
, “
Supersonic compressive ramp without laminar boundary-layer separation
,”
AIAA J.
22
,
29
34
(
1984
).
39.
Y.
Zhao
,
S.
Yi
,
L.
Tian
, and
Z.
Cheng
, “
Supersonic flow imaging via nanoparticles
,”
Sci. China, Ser. E: Technol. Sci.
52
,
3640
3648
(
2009
).
40.
S.
Yi
,
L.
He
,
Y.
Zhao
,
L.
Tian
, and
Z.
Cheng
, “
A flow control study of a supersonic mixing layer via NPLS
,”
Sci. China, Ser. G: Phys., Mech. Astron.
52
,
2001
2006
(
2009
).
41.
S-h
Yi
,
Z.
Chen
,
L.
He
,
Y.
Wu
, and
L-f
Tian
, “
NPLS technique and its applications on aerodynamic investigations of high-speed vehicle
,”
J. Exp. Fluid Mech.
28
,
1
11
(
2014
).
42.
F.
Wei
,
W.-d.
Liu
,
Q.-c.
Wang
,
Y.-x.
Zhao
, and
R.
Yang
, “
Structural characteristics of the strong interaction between oblique shock wave and streamwise vortex
,”
Phys. Fluids
34
,
101702
(
2022
).
43.
F.
Wei
,
R.
Yang
,
W.
Liu
,
Y.
Zhao
,
Q.
Wang
, and
M.
Sun
, “
Flow structures of strong interaction between an oblique shock wave and a supersonic streamwise vortex
,”
Phys. Fluids
34
,
106102
(
2022
).
44.
T.
Ukai
,
H.
Zare-behtash
,
K.
Kontis
,
L.
Yang
, and
E.
Erdem
, “
Experimental investigation of surface flow pattern on truncated cones in Mach 5 flow: Influence of truncation ratio
,”
Exp. Therm. Fluid Sci.
81
,
396
405
(
2017
).
45.
D.
Knight
,
H.
Yan
,
A. G.
Panaras
, and
A.
Zheltovodov
, “
Advances in CFD prediction of shock wave turbulent boundary layer interactions
,”
Prog. Aerosp. Sci.
39
,
121
184
(
2003
).
46.
J.
Cooke
and
M.
Hall
, “
Boundary layers in three dimensions
,”
Prog. Aerosp. Sci.
2
,
222
282
(
1962
).
47.
Q. C.
Wang
,
Z. G.
Wang
, and
Y. X.
Zhao
, “
Visualization of Görtler vortices in supersonic concave boundary layer
,”
J. Visualization
21
,
57
62
(
2018
).
48.
R.
Yang
,
D.
Modesti
,
Y.-x.
Zhao
,
Q.-c.
Wang
,
Z.-g.
Wang
, and
S.
Pirozzoli
, “
Influence of corner angle in streamwise supersonic corner flow
,”
Phys. Fluids
33
,
056108
(
2021
).
49.
R.-z.
Yang
,
R.
Yang
, and
Y.-x.
Zhao
, “
Influence of compressibility on the development of streamwise supersonic corner flow
,”
Phys. Fluids
33
,
116102
(
2021
).
50.
W.
Konrad
,
A. J.
Smits
, and
D.
Knight
, “
Mean flowfield scaling of supersonic shock-free three-dimensional turbulent boundary layer
,”
AIAA J.
38
,
2120
2126
(
2000
).
51.
Q. C.
Wang
,
Z. G.
Wang
, and
Y. X.
Zhao
, “
The impact of streamwise convex curvature on the supersonic turbulent boundary layer
,”
Phys. Fluids
29
,
116106
(
2017
).
You do not currently have access to this content.